

Dino Christenson & Scott Powell Ohio State University November 20, 2007

Introduction to R Outline

- I. Data Description
- II. Data Analysis
 - i. Command functions
 - ii. Hand-rolling
 - **III. OLS Diagnostics & Graphing**
 - IV. Functions and loops
- V. Moving forward

- R has several built-in commands for describing data
- The list()
 command can output all elements of an object

R Console	- • •
<pre>'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.</pre>	*
> #Load Libraries > library(foreign)	
> #Read in the Data	
>	
<pre>> data <- read.dta("Senate2002.dta")</pre>	
> attach(data)	
> #Descriptive Statistics - Examples	
> list(data)	
[[1]]	
repvshr income presvote pressup	
1 59.52665 34135 56.0 88	
2 88.14516 51571 59.0 95	
3 52.55351 47203 51.0 96	
4 41.20611 47381 42.0 77	
5 53.466/1 42433 55.0 90 6 66 69990 37572 67 0 05	
7 38 65622 46590 43 0 67	
8 44.69222 39469 48.0 69	
9 64.67520 33672 57.0 96	
10 48.29952 32566 53.0 84	=
11 58.43565 37240 44.0 88	
12 38.46476 44667 46.0 66	
13 33.58933 33024 58.0 88	
14 84.97204 39250 62.0 98	
15 65.04277 34133 47.8 96	
10 61.21235 33400 60.0 96	
18 21 57351 42090 32 0 66	
19 55.13115 37082 57.0 82	
20 49.92046 35282 60.0 68	
21 36.88865 29696 52.0 71	
22 56.77559 37892 68.0 93	
>	
4	

- The summary() command can be used to describe all variables contained within a dataframe
- The summary() command can also be used with individual variables

R R C	onsole					×
> #D	escripti	ive Statis	tics - Exa	mples		^
>	-			-		
> li	st (data)					
[[1]]					
	repvshr	income pr	esvote pre	ssup		
1 5	9.52665	34135	56.0	88		
28	8.14516	51571	59.0	95		
3 5	2.55351	47203	51.0	96		
4 4	1.20611	47381	42.0	77		
5 5	3.46671	42433	55.0	90		
6 6	6.68880	37572	67.0	95		
7 3	8.65622	46590	43.0	67		
8 4	4.69222	39469	48.0	69		
9 6	4.67520	33672	57.0	96		
10 4	8.29952	32566	53.0	84		
11 5	0.43505	37240	44.0	00		_
12 3	0.404/0	22024	40.0	00		
14 8	4 97204	39250	62 0	00		
15 6	5 04277	34133	47.8	96		
16 6	1.21235	33400	60.0	96		
17 5	8.66380	40916	46.5	91		
18 2	1.57351	42090	32.0	66		
19 5	5.13115	37082	57.0	82		
20 4	9.92046	35282	60.0	68		
21 3	6.88865	29696	52.0	71		
22 5	6.77559	37892	68.0	93		
1						=
> su	mmary(da	ata)				
	repvshr		income	presvote	pressup	
Min	. :21.	.57 Min.	:29696	Min. :32.00	Min. :66.00	
1st	Qu.:42.	.08 1st	Qu.:34134	1st Qu.:46.82	1st Qu.:72.50	
Med	1an :54.	.30 Medi	an :37732	Median :54.00	Median :88.00	
Mea	n :53.	.57 Mean	:38967	Mean :52.92	Mean :84.55	
3rd Mar	. yu.:60.	15 Mor	Qu.:42347	3ra Qu.:58./5	3ra Qu.:95.00	
, max	mmaru/re	nvshr)	:515/1	max. :00.00	max. :90.00	
и м	in. 1et	Ou. Medi	an Mean	3rd Ou. May		
21	.57 42	2.08 54.	30 53.57	60.79 88.15		
>			00.07	00110		
						Ŧ
						•

- Simple plots can also provide familiarity with the data
- The hist()
 command produces a histogram for any given data values

- Simple plots can also provide familiarity with the data
- The plot()
 command can produce both univariate and bivariate plots for any given objects

Other Useful Commands

- sum
- mean
- var
- sd
- range

- min
- max
- median
- cor
- summary

- As mentioned above, one of the big perks of using R is flexibility.
- R comes with its own canned linear regression command:
 lm(y ~ x)
- However, we're going to use R to make our own OLS estimator. Then we will compare with the canned procedure, as well as Stata.

- First, let's take a look at our code for the hand-rolled OLS estimator
- The Holy Grail: (X'X)⁻¹ X'Y
- We need a single matrix of independent variables
- The cbind() command / takes the individual variable vectors and combines them into one x-variable matrix
- A "1" is included as the first element to account for the constant.

Rin	tro - Notepad			
File	Edit Format View Help			
#Han	d-rolled OLS			*
1	<pre>x<-as.matrix(cbind(int=1,incol y<-as.vector(repvshr) i<-diag(1,nrow=nrow(x),ncol=n n<-length(y) p<-ncol(x)-1</pre>	me,presvote,pres col(x))	ssup))	
	<pre>xy<-t(x)%*%y xxi<-solve(t(x)%*%x) h<-x%*%xxi%*%t(x) i<-diag(1,nrow=n,ncol=n)</pre>	# x'Y #(X'X)^(-1) #hat matrix of	X	E
	<pre>b<-as.vector(xx1%*%xy) names(b)<-colnames(x)</pre>	#estimated coel	Ticients	
	yhat<-as.vector(x%*%b) res<-y-yhat # or (i-h)%*%y	#predicted valu #model residua	ues for y Is	
	sst<-sum((y-mean(y))^2) sse<-t(res)%*%res ssm<-sst-sse	#Total sum of s # or sum(res^2) #sum of squares	sqares) which is also t(res)%*%ro 5 for model (regression)	es
	df.e<-(n-p-1) df.t<-(n-1) df.m<-df.t-df.e	#degrees of fro #total degrees #degrees of fro	eedom for error of freedom eedom for model	
	<pre>s2<-as.vector(sse/df.e) # or sigma2<-as.vector(sse/(n-p)) r2<-1-(sse/sst) r2.adj<-1-((sse/df.e)/(sst/df aic<-n*log(sse/n)+2*(p+1) cp<-(sse/s2)-(n-2*(p+1)) f<-(ssm/df.m)/(sse/df.e) pvalue<-1-pf(f,df.m,df.e)</pre>	(t(res)%*%res)?	(n-p-1)	
	<pre>b.standard.errors<-sqrt(diag() b.t.statistic<-b/b.standard.en b.t.prob<-2*(1-pt(b.t.statist))</pre>	xxi))*sqrt(s2) rrors ic,df.e))	#coefficient standard erro #t statistic for st. erro #alpha 0.05	ors rs +
•				► ai

- With the x and y matrices complete, we can now manipulate them to produce coefficients.
- After performing the divine multiplication, we can observe the estimates by entering the object name (in this case "b").

- With the x and y matrices complete, we can now manipulate them to produce coefficients.
- After performing the divine multiplication, we can observe the estimates by entering the object name (in this case "b").

R Co	nsole				
>	i<-diag(1,nrow=n,ncol=n)	*			
>	b<-as.vector(xxi%*%xy)	#estimated coefficients			
>					
>	names(b)<-colnames(x)				
>					
>	yhat<-as.vector(x%*%b)	#predicted values for y			
>	res<-y-yhat ⋕ or (i-h)%*%y	#model residuals			
>					
>	sst<-sum((y-mean(y))^2)	#Total sum of sqares			
>	sse<-t(res)%*%res	<pre># or sum(res^2) which is also t(\$</pre>			
>	ssm<-sst-sse	#sum of squares for model (regre\$			
>					
>	df.e<-(n-p-1)	#degrees of freedom for error			
>	df.t<-(n-1)	<pre>#total degrees of freedom</pre>			
>	df.m<-df.t-df.e	#degrees of freedom for model			
>					
>	<pre>s2<-as.vector(sse/df.e) # or</pre>	(t(res) %*%res)?(n-p-1)			
>	<pre>sigma2<-as.vector(sse/(n-p))</pre>				
>	r2<-1-(sse/sst)				
>	r2.adj<-1-((sse/df.e)/(sst/df	f.t))			
>	aic<-n*log(sse/n)+2*(p+1)				
>	cp<-(sse/s2)-(n-2*(p+1))				
>	f<-(ssm/df.m)/(sse/df.e)				
>	pvalue<-1-pf(f,df.m,df.e)				
>					
>	b.standard.errors<-sqrt(diag	<pre>(xxi))*sqrt(s2) #coefficient stan\$</pre>			
>	b.t.statistic<-b/b.standard.e	errors #t statistic for \$			
Ъ	b.t.prob<-2*(1-pt(b.t.statist	tic,df.e)) #alpha 0.05			
	int income pre	esvote pressup			
-7.29	5361e+01 6.743087e-04 6.02183	32e-01 8.088049e-01			
>		-			
•		►			

- To find the standard errors, we need to compute both the variance of the residuals and the cov matrix of the x's.
- The sqrt of the diagonal elements of this var-cov matrix will give us the standard errors.
- Other test statistics can be easily computed.
- View the standard errors.

l	🔄 Rintro - Notepad		X
	File Edit Format View Help		
	#Hand-rolled OLS		^
	x<-as.matrix(cbind(int=1,incom y<-as.vector(repvshr) i<-diag(1,nrow=nrow(x),ncol=nc	e,presvote,pressup)) ol(x))	
	n<-length(y) p<-ncol(x)-1		
	xy<-t(x)%*%y xxi<-solve(t(x)%*%x) h<-x%*%xxi%*%t(x) i< diac(1 prover prol-p)	# X'Y #(X'X)^(-1) #hat matrix of x	ш
	b<-as.vector(xxi%*%xy)	#estimated coefficients	
	names(b)<-colnames(x)		
	yhat<-as.vector(x%*%b) res<-y-yhat # or (i-h)%*%y	#predicted values for y #model residuals	
	<pre>sst<-sum((y-mean(y))^2) sse<-t(res)%*%res ssm<-sst-sse</pre>	#Total sum of sqares # or sum(res^2) which is also t(res)%*%res #sum of squares for model (regression)	
	df.e<-(n-p-1) df.t<-(n-1) df.m<-df.t-df.e	#degrees of freedom for error #total degrees of freedom #degrees of freedom for model	
	<pre>s2<-as.vector(sse/df.e) # or (sigma2<-as.vector(sse/(n-p)) r2<-1-(sse/sst) r2.adj<-1-((sse/df.e)/(sst/df. aic<-n*log(sse/n)+2*(p+1) cp<-(sse/s2)-(n-2*(p+1)) f<-(ssm/df.m)/(sse/df.e) pvalue<-1-pf(f,df.m,df.e)</pre>	t(res)%*%res)?(n-p-1) t))	
	b.standard.errors<-sqrt(diag(x b.t.statistic<-b/b.standard.er b.t.prob<-2*(1-pt(b.t.statisti	xi))*sqrt(s2) #coefficient standard errors rors #t statistic for st. errors c,df.e)) #alpha 0.05	-
	•		►

- To find the standard errors, we need to compute both the variance of the residuals and the cov matrix of the x's.
- The sqrt of the diagonal elements of this var-cov matrix will give us the standard errors.
- Other test statistics can be easily computed.
- View the standard errors.

Ri	intro - Notepad		x
File	Edit Format View Help		
#Har	nd-rolled OLS		*
	x<-as.matrix(cbind(int=1,inco y<-as.vector(repvshr) i<-diag(1,nrow=nrow(x),ncol=r	me,presvote,pressup)) col(x))	
	n<-length(y) p<-ncol(x)-1		
	xy<-t(x)%*%y xxi<-solve(t(x)%*%x) h<-x%*%xx1%*%t(x) i<-dia(1_prow=p_pcol=p)	# X'Y #(X'X)^(-1) #hat matrix of x	Ш
	b<-as.vector(xxi%*%xy)	#estimated coefficients	
	names(b)<-colnames(x)		
	yhat<-as.vector(x%*%b) res<-y-yhat # or (i-h)%*%y	#predicted values for y #model residuals	
	sst<-sum((y-mean(y))^2) sse<-t(res)%*%res ssm<-sst-sse	#Total sum of sqares # or sum(res^2) which is also t(res)%*%res #sum of squares for model (regression)	
	df.e<-(n-p-1) df.t<-(n-1) df.m<-df.t-df.e	#degrees of freedom for error #total degrees of freedom #degrees of freedom for model	
→	<pre>s2<-as.vector(sse/df.e) # or sigma2<-as.vector(sse/(n-p)) r2<-1-(sse/sst) r2.adj<-1-((sse/df.e)/(sst/df aic<-n*log(sse/n)+2*(p+1) cp<-(sse/s2)-(n-2*(p+1)) f<-(ssm/df.m)/(sse/df.e) value<-1-pf(f df m df e)</pre>	(t(res)%*%res)?(n-p-1) .t))	
4	<pre>b.standard.errors<-sqrt(diag(b.t.statistic<-b/b.standard.e b.t.prob<-2*(1-pt(b.t.statist</pre>	xxi))*sqrt(s2) #coefficient standard errors mrors #t statistic for st. errors ic,df.e)) #alpha 0.05	+
	III		In the second secon

- To find the standard errors, we need to compute both the variance of the residuals and the cov matrix of the x's.
- The sqrt of the diagonal elements of this var-cov matrix will give us the standard errors.
- Other test statistics can be easily computed.
- View the standard errors.

R Console	
16 in console	
> names(b)<-colnames(x)	
>	
> yhat<-as.vector(x%*%b)	<pre>#predicted values for y</pre>
> res<-y-yhat # or (i-h)%*%y #model residuals
>	
> sst<-sum((y-mean(y))^2) #Total sum of sqares
> sse<-t(res)%*%res	<pre># or sum(res^2) which is also t(\$</pre>
> ssm<-sst-sse	<pre>#sum of squares for model (regre\$</pre>
>	
> df.e<-(n-p-1)	#degrees of freedom for error
> df.t<-(n-1)	#total degrees of freedom
> df.m<-df.t-df.e	#degrees of freedom for model
>	
> s2<-as.vector(sse/df.e) # or (t(res)%*%res)?(n-p-1)
<pre>> sigma2<-as.vector(sse/</pre>	(n-p))
> r2<-1-(sse/sst)	
<pre>> r2.adj<-1-((sse/df.e)/</pre>	(sst/df.t))
> aic<-n*log(sse/n)+2*(p	+1)
> cp<-(sse/s2)-(n-2*(p+1))
<pre>> f<-(ssm/df.m)/(sse/dt.</pre>	e)
> pvalue<-1-pf(f,dr.m,dr	.e)
>	
> b.standard.errors<-sqr	t(diag(xxi))*sqrt(s2) #coefficient stans
> D.T.STATISTIC<-D/D.STA	ndard.errors #t statistic for \$
> b.t.prob<-2*(1-pt(b.t.	statistic,dr.e)) #aipna 0.05
> D int income	
-7 295361e+01 6 743087e-04	6 021832a-01 8 088049a-01
> h standard.errors	0.0210320-01 0.0000150 01
int income	presvote pressup
2.474573e+01 3.878401e-04 3.1	05179e-01 2.208367e-01
>	
*	
•	III ►

- Time to Compare
- Use the lm() command to estimate the model using R's canned procedure
- As we can see, the estimates are very similar

```
R Console
                                                               - E X
> b
          int.
                     income
                                 presvote
                                                 pressup
-7.295361e+01 6.743087e-04
                             6 021832e-01
                                           8 088049e-01
> b.standard.errors
         int
                   income
                              presvote
                                            pressup
2.474573e+01 3.878401e-04 3.105179e-01 2.208367e-01
> #OLS using the canned R procedure (i.e. the 'lm' command)
> canned.ols <- lm(repvshr ~ income + presvote + pressup)</pre>
> summary(canned.ols)
Call:
lm(formula = repvshr ~ income + presvote + pressup)
Residuals:
     Min
               10
                    Median
                                  30
                                          Max
-21.8269 -4.7384
                    0.6484
                             5.8808
                                    14.8608
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.295e+01 2.475e+01 -2.948 0.00860 **
             6.743e-04 3.878e-04
                                    1.739 0.09918
income
presvote
             6.022e-01 3.105e-01
                                    1.939 0.06830
                                    3.662 0.00178 **
pressup
             8.088e-01 2.208e-01
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.702 on 18 degrees of freedom
Multiple R-Squared: 0.6736,
                                Adjusted R-squared: 0.6192
F-statistic: 12.38 on 3 and 18 DF, p-value: 0.0001245
>
```

- Time to Compare
- We can also see how both the hand-rolled and canned OLS procedures stack up to Stata
- Use the reg command to estimate the model
- As we can see, the estimates are once again very similar

7	~							
	Results							3
	pressup	.8088049	.2208367	3.66	0.002	. 3448442	1.272766	*
	_cons	-72.95361	24./45/3	-2.95	0.009	-124.9425	-20.964/6	
	. browse							
	rea renyshr	income presvo	te pressup					
1		meone presvo	ice pressup					
	Source	SS	df	MS		Number of obs	= 22	
	Model	3496 32969	3 1165	44323		F(3, 18)	= 12.38 - 0.0001	
	Residual	1694.1554	18 94.1	197444		R-squared	= 0.6736	
						Adj R-squared	= 0.6192	
	Total	5190.48509	21 247.	165956		ROOT MSE	= 9.7015	
	repvshr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
	income	0006743	0003878	1 7/	0 000	- 0001405	0014801	
	presvote	.6021832	.3105179	1.94	0.068	0501908	1.254557	Ξ
	pressup	.8088049	.2208367	3.66	0.002	. 3448442	1.272766	
	_cons	-72.95361	24.74573	-2.95	0.009	-124.9425	-20.96476	
								Ŧ

1.272766 -20.96476

0.0001

0.6736

9.7015

.0014891

1.254557

1.272766

-20.96476

.3448442 -124.9425

Prob > F

ROOT MSE

R-squared

-.0001405

-.0501908

.3448442

-124.9425

Number of obs = 22F(3, 18) = 12.38

Adj R-squared = 0.6192

[95% Conf. Interval]

R Console						
> b	•					
int income presvote pressup						
-7.295361e+01 6.743087e-04 6.021832e-01 8.088049e-01		r				
b.standard.errors		Results				
int income presvote pressup		pressup	.8088049	.2208367	3.66	0.0
4/45/3e+01 3.8/8401e-04 3.1051/9e-01 2.20836/e-01		_cons	-72.95361	24.74573	-2.95	0.0
#OLS using the canned R procedure (i.e. the 'im' command)						
conned ols $\leq lm(renushr ~ income \pm nresulte \pm nressun)$		browse				
summary(canned.ols)		. Drowse				
		. reg repvshr	income presvo	ote pressu	p	
11:						
n(formula = repvshr ~ income + presvote + pressup)		Source	SS	df	MS	
		Model	3496 32969	3 11	65 44323	
esiduals:		Residual	1694.1554	18 94	.1197444	
Min 1Q Median 3Q Max						
1.8269 -4.7384 0.6484 5.8808 14.8608		Total	5190.48509	21 24	7.165956	
efficients:						
Estimate Std. Error t value Pr(> t)		repvshr	Coef.	Std. Err	. t	P>
intercept) -7.295e+01 2.475e+01 -2.948 0.00860 **		income	0006742	0002070	1 74	0.0
come 6.743e-04 3.878e-04 1.739 0.09918 .		presvote	6021832	3105179	1.74	0.0
resvote 6.022e-01 3.105e-01 1.939 0.06830 .		pressup	.8088049	.2208367	3.66	0.0
ressup 8.088e-01 2.208e-01 3.662 0.00178 **		_cons	-72.95361	24.74573	-2.95	0.0
-						
gnif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '	1					
acidual standard error, 0 702 on 18 degreess of freeder		·				
Siluar Standard Error: 5.702 on 10 degrees of freedom	E					
Autopic & Squared, 0.0750, Aujusted & Squared, 0.0152						
billibilit 11.55 bit o and 10 br, p varact orobotrio						
•	T					
4	►	1				

Other Useful Commands

- lm
 - Linear Model
- lme
 - Mixed Effects
- anova

- glm
 - General lm
- multinom
 - Multinomial Logit
- optim
 - General Optimizer

OLS Diagnostics in R

- Post-estimation diagnostics are key to data analysis
 - We want to make sure we estimated the proper model
 - Besides, Irfan will hurt you if you neglect to do this
- Furthermore, diagnostics allow us the opportunity to show off some of R's graphs
 - R's real strength is that it has virtually unlimited graphing capabilities
 - Of course, such strengths on R's part is dependent on your knowledge of both R and statistics
 - Still, with just some basics we can do some cool graphs

OLS Diagnostics in R

- What could be *unjustifiably* driving our data?
 - Outlier: unusual observation
 - Leverage: ability to change the slope of the regression line
 - Influence: the combined impact of strong leverage and outlier status
 - According to John Fox, influence=leverage*outliers

OLS Diagnostics: Leverage

- Recall our ols model
 - ols.model1<-lm(formula =
 repvshr~income+presvote+pressup)</pre>
- Our measure of leverage: is the h_i or "hat value"
 - It's just the predicted values written in terms of h_i
 - Where, H_{ij} is the contribution of observation Y_i to the fitted value Y_j
 - If h_{ij} is large, then the ith observation has a significant impact on the jth fitted value
 - So, skipping the formulas, we know that the larger the hat value the greater the leverage of that observation

OLS Diagnostics: Leverage

- Find the hat values
 - -hatvalues(ols.model1)

> ##Leverage > hatvalues(ols.model1) < 1 2 3 4 5 6 7 0.08058958 0.38217510 0.21508254 0.17839298 0.07791739 0.17390212 0.21652515 9 11 12 13 14 10 0.13240657 0.12946990 0.11013685 0.17680240 0.20482571 0.09892587 0.12505991 18 19 20 15 16 17 21 0.25521188 0.12628592 0.13708349 0.32578291 0.07297085 0.32496207 0.25453795 22 0.20095287 > avg.mod1<-ncol(x)/nrow(x)</pre> > avg.mod1 [1] 0.1818182

Calculate the average hat value
 -avg.mod1<-ncol(x)/nrow(x)

OLS Diagnostics: Leverage

- But a picture is worth a hundred numbers?
- Graph the hat values with lines for the average, twice the avg (large samples) and three times the avg (small samples) hat values
 - plot(hatvalues(ols.model
 1))
 - abline(h=1*(ncol(x))/nro
 w(x))
 - abline(h=2*(ncol(x))/nro
 w(x))
 - abline(h=3*(ncol(x))/nro
 w(x))
 - identify(hatvalues(ols.m
 odel1))
 - identify lets us select the data points in the new graph
- State #2 is over twice the avg
- Nothing above three times

OLS Diagnostics: Outliers

- Can we find any data points that are unusual for Y given the Xs?
- Use studentized residuals

$$u_i^* = \frac{u_i}{\sigma_{u(-1)}\sqrt{1-h_i}}$$

- We can see whether there is a significant change in the model
- If their absolute values are larger than 2, then the corresponding observations are likely to be outliers)
- rstudent(ols.model1)

```
> rstudent(ols.model1)
 0.48019795 1.97192270 -1.81307635 -0.59849094 -0.86387841
                                  9
                                             10
                                                         11
                                                                      12
            0.68902256 0.31806953 -0.05965655
                                                 0.97657494
                                 15
-2.77709792 1.72517421 1.02255885 -0.22885529
                                                 0.26198911 -0.80877619
         19
                                 21
                     20
                                             22
 0.25367148 0.99768167 0.12528015 -1.42108584
```

OLS Diagnostics: Outliers

- Again, let's plot them with lines for 2 & -2
- - Perhaps the model is misspecified in terms of functional form (forthcoming) or omitted vars
 - Maybe you can throw out your bad observation
 - If you must include the bad observation, try robust regression

OLS Diagnostics: Influence

OLS Diagnostics: Influence

- For a host of measures \bullet of influence, including df betas and df fits
 - influence.measu res(ols.model1)

3

4

- dfbeta gives the ulletinfluence of an observation on the coefficients – or the change in iv's coefficient 12 caused by deleting a single observation
- Simple commands for • partial regression plots can be found on Fox's website...

```
measures of influence, including df-beta and df-fit
> influence.measures(ols.model1)
Influence measures of
         lm(formula = repvshr ~ income + presvote + pressup) :
      dfb.1 dfb.incm dfb.prsv dfb.prss
                                                            cook.d
                                              dffit cov.r
     .047591 -0.08463
                                           0.14217 1.295 5.28e-03 0.0806
                                 0.020468
                                 0.206512
                                           1.55092
                                                    0.892 5
                           e-01 -0.542793 -0.94909
                                                          2.00e-01
                       2.1
                                                    0.790
                                 0.003785 -0.27888 1.407 2.02e-02 0.
    0.018551 - 0.15898
                       9.62e-02
    0.140077 -0.13349 -3.66e-02 -0.066607 -0.25112
```

1.148 1.60e-02 0.0779 0.074461 -0.02307 -1.05e-01 0.003705 - 0.145841.486 5.60e-03 0.00338 6.08e-05 -0.003494 0.00654 1.604 1.13e-05 0.26917 1.298 1.87e-02 0.1324 8 0.137543 0.00171 3.56e-02 -0.197503 9 0.012258 -0.06613 -2.85e-02 0.070448 0.12266 1.410 3.96e-03 0.1295 10 -0.013501 0.01606 4.56e-03 -0.000609 -0.02099 1.411 1.17e-04 0.1101 0.181001 -0.17994 -3.79e-01 0.264511 0.45258 1.227 5.13e-02 0.1768 0.002175 0.00537 2.43e-03 -0.008720 0.01240 1.580 4.07e-05 13 -0.294634 0.56467 -1.25e-01 -0.026032 -0.92017 0.312 1.54e-01 0.0989 0.13983 -0.398730 2.24e-01 0.261259 0.65223 0.753 9.58e-02 0.1251 1.329 8.93e-02 0.2552 0.177517 -0.31912 -4.41e-01 0.439292 0.59858 0.04267 -2.17e-03 -0.037603 -0.08701 16 -0.0006111.421 2.00e-03 17 0.000169 -0.00028 -7.43e-02 0.072067 0.10442 1.433 2.87e-03 0.1371 0.055702 -0.56220 0.04901 3.86e-01 1 19 0.009685 - 0.007503.67e-02 -0.032806 0.07117 1.335 1.34e-03 0. 20 -0.049384.76e-01 -0.595824 0.69222 1 483 3.78e-03 -0.037402 0.07321 1.680 1.42e-03 0. 21 0.059471 - 0.0510422 0.352385 -0.14803 -5.73e-01 0.119730 -0.71266 1.004 1.20e-01 0.2010

OLS Diagnostics: Normality

OLS Diagnostics: Normality

- A simple density plot of the studentized residuals helps to determine the nature of our data
- The apparent deviation from the normal curve is not severe, but there certainly seems to be a slight negative skew

N = 22 Bandwidth = 0.4217

OLS Diagnostics: Error Variance

- We can also easily look for heteroskedasticity
- Plotting the residuals against the fitted values and the continuous independent variables let's us examine our statistical model for the presence of unbalanced error variance
 - par(mfrow=c(2,2))
 - plot(resid(ols.model1)
 ~fitted.values(ols.mod
 el1))
 - plot(resid(ols.model1)
 ~income)
 - plot(resid(ols.model1)
 ~presvote)
 - plot(resid(ols.model1)
 ~pressup)

OLS Diagnostics: Error Variance

- Formal tests for heteroskedasticity are available from the lmtest library
 - library(lmtest)
 - bptest(ols.model1) will give you the Breusch-Pagan test stat
 - gqtest(ols.model1) will give you the Goldfeld-Quandttest stat
 - hmctest(ols.model1) will give you the Harrison-McCabe test stat

```
> ##Breusch-Pagan, Goldfeld-Quandt, and Harrison-McCabe tests
> bptest(ols.model1)
        studentized Breusch-Pagan test
data: ols.model1
BP = 3.2325, df = 3, p-value = 0.3571
> gqtest(ols.model1)
        Goldfeld-Quandt test
data: ols.model1
GQ = 1.6338, df1 = 7, df2 = 7, p-value = 0.2664
> hmctest(ols.model1)
        Harrison-McCabe test
data: ols.model1
HMC = 0.3878, p-value = 0.235
```

OLS Diagnostics: Collinearity

- Finally, let's look out for collinearity
- To get the variance inflation factors
 - vif(ols.model1)
- Let's look at the condition index from the perturb library
 - library(perturb)
 - colldiag(ols.model1)
- Issues here is the largest condition index
- If it is larger than 30, *Houston* we have...

```
>
> ##Variance inflation factors
> vif(ols.model1)
  income presvote pressup
1.127017 1.636216 1.482685
> ##Obtain the condition index
> colldiag(ols.model1)
Condition
Index
        Variance Decomposition Proportions
          intercept income presvote pressup
   1.000 0.000
1
                    0.001 0.001
                                    0.001
2 10.920 0.004
                    0.307 0.162
                                    0.030
3 21.626 0.012
                    0.030 0.588
                                    0.926
4 27.883 0.983
                    0.662 0.250
                                    0.044
>
```

OLS Diagnostics: Shortcut

Fitted values

The Final Act: Loops and Functions

- As was mentioned above, R's biggest asset is its flexibility. Loops and functions directly utilize this asset.
- Loops can be implemented for a number of purposes, essentially when repeated actions are needed (i.e. simulations).
- Functions allow us to create our own commands. This is especially useful when a canned procedure does not exist. We will create our own OLS function with the hand-rolled code used earlier.

Loops

- for loops are the most common and the only type of loop we will look at today.
- The first loop / command at the right shows simple loop iteration.

R Console	- • •
>	^
>	
> #Simple iteration	
> for (i in 1:10) print (i)	
[1] 1	
[1] 2	
[1] 3	
[1] 4	
[1] 5	
[1] 6	
[1] 10	
> floop to colculate the mean of income	
> #Loop to carculate the mean of income	
> #create objects	
> for (i in 1:22){	
+ sum <- sum + income[i]	
l avg < pum/i	
+ }	
>	
> #Output	
> avg	
[1] 38966.55	
>	E
> #Test against the mean command	
> mean(income)	
[1] 38966.55	
>	
	T
4	н. *

Loops

- However, we can also see how loops can be a little more useful.
- The second example at right (although inefficient) calculates the mean of income
- Note how the index accesses elements of the "income" vector.
- Loops and Monte Carlo

```
R R Console
                                                      #Simple iteration
      (i in 1:10) print (i)
[1]
[1]
    2
[1]
    5
[1]
[1] 6
[1]
[1] 8
[1] 9
[1] 10
 #Loop to calculate the mean of income
  #Create objects
  sum <- 0
  av\sigma < -0
         in 1:22){
         sum + income[i]
  avg <- sum/i
 #Output
>
> avg
[1] 38966.55
  #Test against the mean command
  mean(income)
   38966.55
```

Loops

- However, we can also see how loops can be a little more useful.
- The second example at right (although inefficient) calculates the mean of income
- Note how the index accesses elements of the "income" vector.
- Loops and Monte Carlo

Ŗ R Console	
>	^
5 5	
> #Simple iteration	
\rightarrow for (i in 1:10) print (i)	
[1] 1	
[1] 2	
[1] 3	
[1] 4	
[1] 5	
[1] 6	
[1] 7	
[1] 8	
[1] 9	
[1] 10	
>	
>	
> #Loop to calculate the mean of income	
> #Create objects	
> sum <- 0	
> avg <- 0	
>	
> for (i in 1:22){	
+ sum <- sum 👞 income[i]	
+ avg <- sum/i	
	_
>	
> #Output	
> avg	
[1] 38966.55	
>	=
> #Test against the mean command	
> mean(income)	
[1] 38966.55	
>	
	-
4	+

- Now we will make our own linear regression function using our hand-rolled OLS code
- Functions require inputs (which are the objects to be utilized) and arguments (which are the commands that the function performs)
- The actual estimation procedure does not change. However, some changes are made.

🔄 Rintro - Notepad		<
File Edit Format View Help		
#Designing an OLS function (based	on hand-rolled ols commands above)	*
ols<-function(y,x){		
<pre>x<-as.matrix(cbind(int=1,x)) y<-as.vector(y) i<-diag(1,nrow=nrow(x),ncol=n</pre>	col(x))	
n<-length(y) p<-ncol(x)-1		
xy<-t(x)%*%y xxi<-solve(t(x)%*%x) h<-x%*%xxi%*%t(x) i<-diag(1.prow=n.pcol=n)	# X'Y #(X'X)^(-1) #hat matrix of x	
b<-as.vector(xx1%*%xy)	#estimated coefficients	
names(b)<-colnames(x)		
yhat<-as.vector(x%*%b) res<-y-yhat # or (i-h)%*%y	#predicted values for y #model residuals	
sst<-sum((y-mean(y))^2) sse<-t(res)%*%res ssm<-sst-sse	#Total sum of sqares # or sum(res^2) which is also t(res)%*%res #sum of squares for model (regression)	
df.e<-(n-p-1) df.t<-(n-1) df.m<-df.t-df.e	#degrees of freedom for error #total degrees of freedom #degrees of freedom for model	
<pre>s2<-as.vector(sse/df.e) # or sigma2<-as.vector(sse/(n-p)) r2<-1-(sse/sst)</pre>	(t(res)%*%res)?(n-p-1)	
r2.adj<-1-((sse/df.e)/(sst/df aic<-n*log(sse/n)+2*(p+1) cp<-(sse/s2)-(n-2*(p+1)) f<-(ssm/df.m)/(sse/df.e) pvalue<-1-pf(f,df.m,df.e)	.t))	
b.standard.errors<-sqrt(diag(b.t.statistic<-b/b.standard.e b.t.prob<-2*(1-pt(b.t.statist	xxi))*sqrt(s2) #coefficient standard errors rrors #t statistic for st. errors ic,df.e)) #alpha 0.05	E
b.table<-cbind(est=b,b.se=b.s	tandard.errors,t.stat-b.t.statistic,p-b.t.prob)	
return(list(b=b.table))		
ł		÷
•	4	

- First, we have to tell R that we are creating a function. We'll name it ols.
- This lets us generalize the procedure to multiple objects.
- Second, we have to tell the function what we want "returned" or what we want the output to look like.

Rintro - Notepad		
File Edit Format View Help		
#Designing an OLS function (based	on hand-rolled ols commands above)	
ols<-function(y,x){		
x<-as.matrix(cbind(int=1,x)) y<-as.vector(y) i<-diag(1,nrow=nrow(x),ncol=ncol(x))		
n<-length(y) p<-ncol(x)-1		
xy<-t(x)%*%y xxi<-solve(t(x)%*%x) h<-x%*%xxi%*%t(x)	# X'Y #(X'X)^(-1) #hat matrix of x	
b<-as.vector(xxi%*%xy)	#estimated coefficients	
names(b)<-colnames(x)		
yhat<-as.vector(x%*%b) res<-y-yhat # or (i-h)%*%y	#predicted values for y #model residuals	
sst<-sum((y-mean(y))^2) sse<-t(res)%*%res ssm<-sst-sse	#Total sum of sqares # or sum(res^2) which is also t(res)%*%res #sum of squares for model (regression)	
df.e<-(n-p-1) df.t<-(n-1) df.m<-df.t-df.e	#degrees of freedom for error #total degrees of freedom #degrees of freedom for model	
s2<-as.vector(sse/df.e) # or (t(res)%*%res)?(n-p-1) sigma2<-as.vector(sse/(n-p))		
r2<-1-(SSE/SST) r2.adj<-1-((SSE/df.e)/(SST/df aic<-n*log(SSe/n)+2*(p+1) cp<-(SSE/S2)-(n-2*(p+1)) f<-(SSM/df.m)/(SSE/df.e) pvalue<-1-pf(f,df.m,df.e)	.t))	
b.standard.errors<-sqrt(diag(b.t.statistic<-b/b.standard.e b.t.prob<-2*(1-pt(b.t.statist	xxi))*sqrt(s2) #coefficient standard errors rrors #t statistic for st. errors = ic,df.e)) #alpha 0.05	
b.table<-cbind(est=b,b.se=b.s	tandard.errors,t.stat-b.t.statistic,p-b.t.prob)	
return(list(b=b.table		
}		
•		

- First, we have to tell R that we are creating a function. We'll name it ols.
- This lets us generalize the procedure to multiple objects.
- Second, we have to tell the function what we want "returned" or what we want the output to look like.

🔄 Rintro - Notepad		
File Edit Format View Help		
#Designing an OLS function (based	on hand-rolled ols commands above)	
ols<-function(y,x){		
7		
<pre>x -as.matrix(cbind(int=1,x)) y<-as.vector(y) i<-diag(1,nrow=nrow(x),ncol=ncol(x))</pre>		
n<-length(y) p<-ncol(x)-1		
xy<-t(x)%*%y xxi<-solve(t(x)%*%x) h<-x%*%xxi%*%t(x)	# X'Y #(X'X)^(-1) #hat matrix of x	
b<-as.vector(xxi%*%xy)	#estimated coefficients	
names(b)<-colnames(x)		
yhat<-as.vector(x%*%b) res<-y-yhat # or (i-h)%*%y	#predicted values for y #model residuals	
sst<-sum((y-mean(y))^2) sse<-t(res)%*%res ssm<-sst-sse	#Total sum of sqares # or sum(res^2) which is also t(res)%*%res #sum of squares for model (regression)	
df.e<-(n-p-1) df.t<-(n-1) df.m<-df.t-df.e	#degrees of freedom for error #total degrees of freedom #degrees of freedom for model	
s2<-as.vector(sse/df.e) # or (t(res)%*%res)?(n-p-1) sigma2<-as.vector(sse/(n-p))		
r2<-1-(sse/sst) r2.adj<-1-((sse/df.e)/(sst/df.t)) aic<-n*log(sse/n)+2*(p+1) cp<-(sse/s2)-(n-2*(p+1)) f<-(ssm/df.m)/(sse/df.e) pvalue<-1-pf(f,df.m,df.e)		
b.standard.errors<-sqrt(diag(b.t.statistic<-b/b.standard.e b.t.prob<-2*(1-pt(b.t.statist	xxi))*sqrt(s2) #coefficient standard errors rrors #t statistic for st. errors ic,df.e)) #alpha 0.05	
b.table<-cbind(est=b,b.se=b.s	tandard.errors,t.stat=b.t.statistic,p=b.t.prob)	
return(list(b=b.table		
}		
•	tin III and the second	

- First, we have to tell R that we are creating a function. We'll name it ols.
- This lets us generalize the procedure to multiple objects.
- Second, we have to tell the function what we want "returned" or what we want the output to look like.

Rintro - Notepad		
File Edit Format View Help		
#Designing an OLS function (based	on hand-rolled ols commands above)	
ols<-function(y,x){		
x<-as.matrix(cbind(int=1,x)) y<-as.vector(y) i<-diag(1,nrow=nrow(x),ncol=ncol(x))		
n<-length(y) p<-ncol(x)-1		
xy<-t(x)%*%y xxi<-solve(t(x)%*%x) h<-x%*%xxi%*%t(x) i< diag(t, proving prol-p)	# X'Y #(X'X)^(-1) #hat matrix of x	
b<-as.vector(xxi%*%xy)	#estimated coefficients	
names(b)<-colnames(x)		
yhat<-as.vector(x%*%b) res<-y-yhat # or (i-h)%*%y	#predicted values for y #model residuals	
sst<-sum((y-mean(y))^2) sse<-t(res)%*%res ssm<-sst-sse	#Total sum of sqares # or sum(res^2) which is also t(res)%*%res #sum of squares for model (regression)	
df.e<-(n-p-1) df.t<-(n-1) df.m<-df.t-df.e	#degrees of freedom for error #total degrees of freedom #degrees of freedom for model	
s2<-as.vector(sse/df.e) # or sigma2<-as.vector(sse/(n-p))	(t(res)%*%res)?(n-p-1)	
r2<-1-(sse/sst) r2.adj<-1-((sse/df.e)/(sst/df aic<-n*log(sse/n)+2*(p+1) cp<-(sse/s2)-(n-2*(p+1)) f<-(ssm/df.m)/(sse/df.e) pvalue<-1-pf(f,df.m,df.e)	.t))	
b.standard.errors<-sqrt(diag b.t.statistic<-b/b.standard.e b.t.prob<-2*(1-pt(b.t.statist	(xxi))*sqrt(s2) #coefficient standard errors errors #t statistic for st. errors tic,df.e)) #alpha 0.05	
b.table<-cbind(est=b,b.se=b.s	standard.errors,t.stat=b.t.statistic,p=b.t.prob)	
return(list(b=b.table))		
}	•	
•	h. M	

Functions OLS: Hand-rolled vs Function

- Implementing our new function ols, we get precisely the output that we asked for.
- We can check this against the results produced by the standard lm function.

```
R Console
                                                         - - - -
       b.standard.errors<-sqrt(diag(xxi))*sqrt(s2)
                                                        #coeffici$
       b.t.statistic<-b/b.standard.errors
                                                        #t statis$
       b.t.prob<-2*(1-pt(b.t.statistic,df.e))</pre>
                                                        #alpha 0.$
       b.table<-cbind(est=b,b.se=b.standard.errors,t.stat=b.t$</pre>
    return(list(b=b.table
                 11
+
> #Output of new ols command
> ols(repvshr, income)
$Ъ
                          b.se
              est
                                    t.stat
int 4.585949e+01 2.382350e+01 1.9249684 0.06857514
    1.979220e-04 6.050306e-04 0.3271273 0.74697069
> #Compare to 1m command
> lm(repvshr ~ income)
Call:
lm(formula = repvshr ~ income)
Coefficients:
(Intercept)
                   income
  4.586e+01
                1.979e-04
>
<.
                        111
```

- Implementing our new function ols, we get precisely the output that we asked for.
- We can check this against the results produced by the standard lm function.

R Console	
+ b.standard.errors<-sqrt(diag(xxi))*sqrt(s2)	#coeffici\$
+ b.t.statistic<-b/b.standard.errors	<pre>#t statis\$</pre>
<pre>+ b.t.prob<-2*(1-pt(b.t.statistic,df.e))</pre>	#alpha 0.\$
+	
+	
+ b.table<-cbind(est=b,b.se=b.standard.errors,	t.stat=b.t\$
+	
+	
+ return(list(b=b.table	
+))	
+ }	
> #Output of new ols command	
> ols(repvshr, income)	
\$b	
est b.se t.stat p	
int 4.585949e+01 2.382350e+01 1.9249684 0.06857514	
x 1.9/92202-04 6.0503062-04 0.32/12/3 0./469/069	
> #Compare to 1m command	
<pre>> lm(repyshr ~ income)</pre>	
Call:	
lm(formula = repvshr ~ income)	
Coefficients:	
(Intercept) income	
4.586e+01 1.979e-04	=
>	-
III	b .

Favorite **R**esources

- Invaluable Resources online
 - The R manuals <u>http://cran.r-project.org/manuals.html</u>
 - Fox's slides <u>http://socserv.mcmaster.ca/jfox/Courses/R-course/index.html</u>
 - Faraway's book <u>http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf</u>
 - Anderson's ICPSR lectures using R <u>http://socserv.mcmaster.ca/andersen/icpsr.html</u>
 - Arai's guide <u>http://people.su.se/~ma/R_intro/</u>
 - UCLA notes <u>http://www.ats.ucla.edu/stat/SPLUS/default.htm</u>
 - Keele's intro guide <u>http://www.polisci.ohio-state.edu/faculty/lkeele/RIntro.pdf</u>
- Great R books
 - Verzani's book <u>http://www.amazon.com/Using-Introductory-Statistics-John-Verzani/dp/1584884509</u>
 - Maindonald and Braun's book
 <u>http://www.amazon.com/Data-Analysis-Graphics-Using-R/dp/0521813360</u>