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A B S T R A C T

Exponential Random Graph Models (ERGMs) are an increasingly common tool for inferential network analysis.
However, a potential problem for these models is the assumption of correct model specification. Through six
substantive applications (Mesa High, Florentine Marriage, Military Alliances, Militarized Interstate Disputes,
Regional Planning, Brain Complexity), we illustrate how unobserved heterogeneity and confounding leads to
degenerate model specifications, inferential errors, and poor model fit. In addition, we present evidence that a
better approach exists in the form of the Frailty Exponential Random Graph Model (FERGM), which extends the
ERGM to account for unit or group-level heterogeneity in tie formation. In each case, the ERGM is prone to
producing inferential errors and forecasting ties with lower accuracy than the FERGM.

Exponential Random Graph Models (ERGMs) are an increasingly
common tool used to draw meaningful inferences from network data.1

Indeed, the ability to model the effects of nodal, dyadic, subgraph, and
network covariates on network generation makes this tool ex-
ceptionally powerful. Like other likelihood-based models, using the
ERGM to identify a causal generative process requires the assumption
that the model is correctly and completely specified. In other words,
central to using ERGMs to identify causal effects is the assumption that
there is no omitted variable bias. While there exist a plethora of tools to
overcome this barrier in generalized linear models or survival models,
few tools have been innovated for those interested in employing
ERGMs. This problem is particularly acute as incorrectly specified

ERGMs are prone to degeneracy, inferential errors, and poor model fit
as terms may be highly collinear (Hunter et al., 2008a).

A straightforward approach to overcome this significant barrier is
based on an extension of the ERGM to account for unit and group-level
heterogeneity in sender or receiver effects with the inclusion of a frailty
component, the Frailty Exponential Random Graph Model (FERGM)
(Box-Steffensmeier et al., 2017).2 The FERGM has been found to pro-
duce unbiased and consistent effect estimates while generating model
estimates that forecast ties with greater accuracy than an ERGM alone.3

However, little is known about the prevalence and effects of unobserved
heterogeneity in practice, particularly in terms of the mid- to large-
sized networks that constitute the bulk of ERGM applications.
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In this manuscript, we compare the use of the canonical ERGM with
the FERGM for the purpose of providing practical advice to applied
researchers. We begin by discussing how significant and prevalent un-
observed heterogeneity is in applied work with ERGMs, where the goal
is drawing meaningful inferences or forecasting out-of-sample. Six
substantive applications of networks across a range of dis-
ciplines—including the Mesa High, Florentine Marriage, Military
Alliances, Militarized Interstate Disputes, Regional Planning, and Brain
Complexity networks—illustrate the problem of unobserved hetero-
geneity in important and different ways. In sum, we find that the in-
ferences drawn from model estimates differ, and the FERGM frequently
out-predicts the ERGM. This work demonstrates the dangers and pre-
valence of unobserved heterogeneity, as well as the great promise of the
FERGM for the increasing number of social and natural scientists re-
lying on conventional ERGMs for network inference.

1. The ERGM and its limitations

The Exponential Random Graph Model (ERGM) is a flexible statis-
tical framework for jointly modeling the influence of exogenous cov-
ariates and endogenous network dependencies on relational outcomes.
In recent years, the ERGM has become a tool commonly used for esti-
mating the effect of covariates and complex interdependencies alike
(e.g., Wasserman and Pattison, 1996; Snijders, 2002; Snijders et al.,
2006; Robins et al., 2007a,b; Cranmer and Desmarais, 2011; Box-
Steffensmeier and Christenson, 2014, 2015; Cranmer et al., 2016;
Victor et al., 2016). In this section we briefly review the standard cross-
sectional ERGM, highlighting a significant limitation of the model: its
failure to account for unobserved heterogeneity.4 This limitation
manifests itself in three observable problems in ERGMs: degeneracy,
inferential errors, and reduced model fit. In the following section we
revisit the FERGM with particular attention to how the frailty approach
addresses unobserved heterogeneity and what that should mean for
applied work.

1.1. ERGM and estimation

Consider a network N that is constituted by n actors and a series of
dyadic relationships between those actors, marked nij for the presence
of a tie between nodes ni and nj. The types of actors in n or the re-
lationships included, are arbitrary, but ultimately constitute N. N is
typically characterized by an adjacency matrix, and in the case of the
binary unimodal networks utilized within the canonical ERGM, N is an
n× n matrix where each element refers to the existence or non-ex-
istence of a tie, nij∈ {0, 1}.5 When nij=1 necessary implies that nji=1,
then the adjacency matrix is symmetric and the network is said to be
undirected. If nij=1 and it is possible for nji=0, the adjacency matrix
is said to be asymmetric and the network is directed. Typically, the nii
diagonals of this matrix are undefined, in other words, loops are typi-
cally ignored.

The ERGM explicitly models the probability of observing N condi-
tioned on a set of model terms which is comprised of nodal, dyadic,
subgraph, and network covariates.6 The ERGM is canonically derived
as:
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where θ refers to the parameters informing the generative model of the
network and h(N) refers to a set of statistics computed on the network.
The denominator in the former equation reflects a normalizing term
constituted by all possible permutations of network N, � . In its cano-
nical form, all ERGM terms represent fixed measurements that are
computed as sums of subgraph products or change statistics.

The estimation of ERGMs via maximum-likelihood estimation is
difficult as the normalizing constant can be computationally in-
tractable. In cases where networks are particularly small, true estima-
tion via maximum likelihood is tractable. However, for relatively large
networks traditional maximum likelihood estimation is simply not a
computationally tractable option. The logic is relatively simple, the
normalizing constant must be recomputed as θ is updated, and for large
networks the number of permutations in � can increase to in-
comprehensibly large numbers. As a result, this normalizing constant is
typically approximated through Markov chain Monte Carlo maximum
likelihood estimation (MCMC-MLE) (Snijders, 2002), although other
less commonly used methods exist, including maximum psudolikeli-
hood estimation (MPLE) (Wasserman and Pattison, 1996; Anderson
et al., 1999).

While a thorough review of ERGM estimation is neither novel or
within the scope of this piece, a brief review is necessary to understand
the problems associated with ERGM estimation.7 MCMC-MLE involves
the simulation of a distribution of random graphs that are most similar
to the network observed. With these simulated networks that best ap-
proximate the normalizing constant, values of θ are updated and re-
fined until there is little change in the likelihood and the parameter
estimates appear to have stabilized (Snijders, 2002). MPLE offers a
quick and pragmatic alternative to MCMC-MLE, but may ultimately
produce biased confidence intervals under strong dependence among
observations (Robins et al., 2007a; Van Duijn et al., 2009). MPLE re-
presents a form of change statistic regression wherein the probability of
dyadic tie formation is predicted through conventional change statistic
implementation of ERGM-based terms (Anderson et al., 1999). When
estimating the canonical parametrization of the cross-sectional ERGM, a
series of problems may emerge which we will discuss in the following
pages.

1.2. Unobserved heterogeneity

Modeling networks using the Exponential-family approach is prone
to a significant problem in statistical inference: unobserved hetero-
geneity (Hoff, 2005; Thiemichen et al., 2016; Box-Steffensmeier et al.,
2017). Those familiar with survival or event history models may be
familiar with a parallel problem: some units may be more or less prone
to experience an event based upon unobserved unit-level heterogeneity.
In the classic example of cardiac health, some individuals may be more
or less likely to experience a heart attack based upon factors that are
difficult, if not impossible, to observe in observational data: diet, ge-
netic makeup, etc. In network modeling, a similar dynamic plays out,
some individuals may be more or less likely to form friendships based
upon factors that are difficult, if not impossible, to observe in ob-
servational data: charisma, personality, etc. In modeling either heart
attacks or friendship ties, this unobserved unit-level variation may
manifest itself in a variety of modeling challenges. When using the
canonical ERGMs to model network formation under unit-level het-
erogeneity, three particular challenges emerge: degeneracy, omitted
variable bias, and inferior model fit. We will discuss each of these
briefly in turn, saving an extended discussion for the following section.

1.2.1. Degeneracy
Any analyst estimating ERGMs through MCMC-MLE has likely

4 This limitation has been addressed in non-ERG network models (Hoff, 2008;
Krivitsky et al., 2009; Minhas et al., 2016).

5 However, it is worth noting that there have been generalizations of this
model to different tie classifications (Desmarais and Cranmer, 2012; Wilson
et al., 2017).

6 The ERGM, largely developed by Holland and Leinhardt (1981) and Frank
and Strauss (1986), was first fully derived by Wasserman and Pattison (1996).

7 For further discussion, we would direct the reader to Anderson et al. (1999),
Snijders (2002), Robins et al. (2007a), and Van Duijn et al. (2009).
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encountered a degenerate model specification. Degeneracy is an esti-
mation problem that occurs when the specification of a model is so
unlikely to have generated the network that an ERGM cannot be esti-
mated (Handcock et al., 2003). When using MCMC-MLE, a poorly
specified model will lead the Markov chains to move to extreme ends of
the graph – perfectly empty or perfectly full networks – where the chain
will stay and produce errors or poorly fitting models. While degeneracy
is not particularly a problem as it indicates a poorly fitting model, it
may prevent an analyst from considering a desired theoretically-moti-
vated specification, or from fitting a model to particularly dense or
sparse networks.

1.2.2. Omitted Variable Bias
Like most statistical models, ERGMs require the assumption that

models are correctly and completely specified, that there is no omitted
variable bias. This is an untestable assumption, and violating it threa-
tens the credibility of inferences that can be drawn from ERGMs. This
latent and unobserved heterogeneity that exists among units in their
motivations for tie formation may confound relationships of interest,
and as such, lead to Type 1 or Type 2 errors. Given the collinearity
inherent in networks between structural model terms, this problem is
particularly acute (Hunter et al., 2008a).

1.2.3. Inferior model fit
The failure of conventional parameterizations of the ERGMs to ac-

count for unobserved heterogeneity has significant implications for
model fit. If the estimates from model terms are biased from variable
omission, then traditional goodness of fit routines used for network
models may illustrate poor model fit (Hunter et al., 2008a). For ex-
ample, if certain individuals are more outgoing than others, con-
ventionally parameterized ERGMs may confuse this unit-level char-
acteristic with a network tendency towards triadic closure and thus,
networks simulated from estimated parameters will have more triangles
than the observed network. As such, when analysts use conventional
ERGMs to forecast ties out-of-sample, they must be aware of the role of
unobserved heterogeneity in producing poorly fitting models.

2. The FERGM solution

As previously mentioned, an essential assumption of the ERGM is
that h(N) reflects a vector of sufficient statistics for the network. In
other words, that the model reflects the correct and complete specifi-
cation of all endogenous dependencies and exogenous covariates to
explain the network's generation. This assumption is strong and un-
testable. Should important confounders, observed or unobserved, be
excluded, then the aforementioned problems plaguing ERGMs will
likely emerge.

Unobserved heterogeneity may lead to problematic substantive in-
ferences. Take the canonical example of a friendship network, where
many observable factors may lead to the formation of friendships be-
tween individuals (e.g. common political beliefs, socio-economic status,
age, race, etc.). It would also be expected that friendships form between
actors with common friends, that there would be a tendency towards
triadic closure. However, certain unobserved factors may inform whe-
ther two actors become friends, including personality characteristics
like friendliness or charisma, or deviant tendencies, like drug use (Box-
Steffensmeier et al., 2017). These unobservables may also be related to
network structure, as more friendly nodes may create triadic closure
among alters. This heterogeneity may lead to any of the following:
degenerate models as the data generating process may be incorrectly
described; incorrect inferences about the prevalence of triadic closure
as a generative feature of the network or the effect of other exogenous
covariates; or poor model fit. We will explore these problems explicitly
through a series of analyses, illustrating how these problems become
manifest in the canonical ERGM, their substantive implications, and
how a frailty-approach can resolve these issues.

To overcome the issue of unobserved confounding, we explore a
recent extension to the ERGM, the Frailty Exponential Random Graph
Model (FERGM) (Box-Steffensmeier et al., 2017), which includes a
frailty term analogous to those used in event history models (Box-
Steffensmeier and De Boef, 2006; Box-Steffensmeier et al., 2007).8 The
FERGM introduces individual (or group) level random effects into the h
(N) component of the ERGM to capture the latent factors that inform
the propensity for certain individuals or groups to form ties. In other
words, a term is added to model the variance in individual-level degree
distributions. If one assumes that there are just some actors that are
more social si, or some actors that are just more popular ri, and if one
assumes these terms are distributed standard normal, the following
directed FERGM is identified:
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For an undirected network, one simply only needs to exclude the
∑ =

ri
N

i1 term. We will focus upon this reduced version for the undirected
model in our replications:
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2.1. Estimation

The FERGM previously proposed can be estimated through a logistic
multiple membership mixed-effects model. In this particular case, we
can assume there are random effects associated with each node, mod-
eling each potential undirected tie as a function of change statistics
computed on the network and the previously discussed random effects:

= = ′ + +− θn N s shPr( 1) logit { ( ) }i jij
1 (4)

In the undirected case, si and sj refer to the random effect frailty
terms associated with nodes i and j, h(N) is a vector of change statistics
for when a tie nij is toggled on and off, and θ is the vector of coefficients
associated with these change statistics. For those familiar with ERGM
estimation, when excluding si and sj, one is left with the MPLE estimator
for the ERGM.

Estimating the FERGM through MPLE in this way offers a variety of
advantages. First, and foremost, the FERGM is not susceptible to de-
generacy given that it does not rely upon MCMC-MLE estimation. This
is a significant benefit to those who might be interested in testing an
ideal model specification which might otherwise be degenerate.
Second, the FERGM can be estimated using standard mixed-effects
modeling packages available in R and Stan. Third, given that the
technique does not rely upon MCMC sampling, model estimation is
scalable and for larger networks occurs at a fraction of the time of
conventional ERGMs. One potential criticism of using MPLE is that
confidence intervals may be artificially narrow (Handcock et al., 2003;
Van Duijn et al., 2009). However, previous work has suggested that the
estimated credible intervals for the FERGM are likely accurate (Box-
Steffensmeier et al., 2017). In addition, prior work has also indicated
that the FERGM estimated through MPLE minimized the root mean
squared error relative to the MCMC-MLE estimated ERGM (Box-
Steffensmeier et al., 2017). This is, of course, assuming that an MPLE
exists and that it is finite (Handcock et al., 2003).

2.2. Other approaches to heterogeneity

The FERGM differs from many of the other approaches to unit-level
heterogeneity within a network, in so far as it explicitly accounts for

8 The related R package for the FERGM (Morgan et al., 2018) is available
online at CRAN.
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unit-level heterogeneity as an omitted variable while allowing users to
maintain the simple and standard frequentist ERGM framework.9

Fellows and Handcock (2012) introduce an endogeneous model, the
Exponential Random Network Model (ERNM) that provides an oppor-
tunity to disentangle the relationship between social influence and so-
cial selection, but does not attempt to model unit-level heterogeneity in
the sociality of nodes with random-effects. Others have advocated for a
latent factor-based approach to representing unit-level heterogeneity,
modeling network dynamics and heterogeneity in degree distributions
as low-dimensional nodal attributes (Hoff, 2005, 2009; Fosdick and
Hoff, 2015; Minhas et al., 2016). This approach, while accounting for
network dependencies and unit-level heterogeneity, does not allow for
hypothesis testing within the standard ERGM framework.

Other approaches to unit-level heterogeneity have adopted a mix-
ture of data generating processes, stepping outside of the conventional
objectives of the ERGM framework. Conventional approaches, such as
the Stochastic Block Model or the Mixed-Membership Stochastic Block
Model attempt to model heterogeneity in the probability that two actors
of two given blocks form a relationship as a function of network posi-
tion (Holland et al., 1983; Snijders and Nowicki, 1997; Airoldi et al.,
2008) and/or covariate data (Gormley and Murphy, 2010; White and
Murphy, 2016). More recently, the ego-ERGM and ego-TERGM were
introduced to represent cases where actors within a broader network
are assumed to have heterogeneous motives for forming relationships or
tie generating processes (Salter-Townshend and Brendan Murphy,
2015; Box-Steffensmeier et al., 2018; Campbell, 2018a).

There are also approaches that consider local variation and het-
erogeneity within the ERGM context. Thiemichen et al. (2016) in-
troduce a fully Bayesian approach to the ERGM, the Bayesian ERGM
(BERGM), that can account for unit-level heterogeneity through
random effects. While this approach is certainly similar to the FERGM
introduced by Box-Steffensmeier et al. (2017) and discussed here, the
models differ in important ways. Perhaps most importantly, the BERGM
requires the analyst to select a variety of hyperparameters, including
the choice of priors for the random effects. This choice is not required
by the FERGM as random effects are imposed to be mean zero centered.
There is also the Hierarchical ERGM (HERGM) (Schweinberger and
Handcock, 2015; Schweinberger and Luna, 2018), which considers
unobserved heterogeneity as a form of local or community-based de-
pendence. Thus, it considers heterogeneity in the subgraph or com-
munity-based context, not the unit-level context that is central to our
motivation. It should be noted, however, that the FERGM also offers the
opportunity to consider group-level effects through specifying a group-
level, instead of individual-level, frailty term.10

2.3. Improved model performance

In this section, we discuss the how the FERGM overcomes the pre-
viously articulated problems likely to be plaguing the conventionally
parameterized cross-sectional ERGM across a host of scholarly domains.
While Box-Steffensmeier et al. (2017) presented the model and its proof
of concept, we extend this discussion by further detailing the benefits of
the model, namely its ability to avoid degeneracy and omitted variable
bias, and its ability to produce more accurate predictions out-of-sample.
We also provide a unique and important contribution in showing the
substantive implications of the ERGM's limitations and how the FERGM
can fix them. We begin by discussing the issue of degeneracy in ERGMs,
and how the FERGM specifically avoids this pitfall common in network

modeling. We then move to discussing omitted variable bias in ERG-
family modeling, and how the FERGM's frailty terms account for this
unobserved heterogeneity. Third, we assess the relative out-of-sample
predictive performance of the ERGM and FERGM. In the following
section we present a series of replication exercises to illustrate the
practical considerations that would lead to the use of the FERGM over
the ERGM.

2.3.1. Degeneracy
One significant feature of ERGMs estimated through MCMC-MLE is

model degeneracy. Degeneracy describes a feature of the MCMC-based
estimation procedure of ERGMs wherein algorithms converge towards
graphs that are either empty or complete, or do not consistently con-
verge (Handcock et al., 2003). This problem is a particular feature of
how the normalizing constant is approximated through MCMC. Those
who have attempted to estimate ERGMs have likely experienced this
problem and resorted to alternative model specifications in an attempt
to find an identifiable model. While this problem may in many cases be
a guard against a poorly fitting model (Handcock et al., 2003, 7), for
substantive scholars it may reflect an obstacle to estimating a theore-
tically-motivated model.

The FERGM is not prone to degeneracy as it does not rely upon
MCMC to approximate the normalizing constant. As noted, one poten-
tial concern is that confidence intervals estimated through MPLE will be
artificially narrow (Van Duijn et al., 2009). However, Box-Steffensmeier
et al. (2017) have indicated that the confidence intervals estimated for
the FERGM are consistent and unbiased. As such, one of the largest
drawbacks of ERG-family modeling may be resolved when accounting
for unobserved heterogeneity through the use of frailty terms.

2.3.2. Omitted variable bias
A core modeling assumption of most likelihood based models, the

ERGM included, is that the terms included reflect the full data gen-
erating process. This assumption is rarely met in observational data as a
variety of factors influencing an outcome may be unobserved, including
individual-level factors that may predispose an observation to obser-
ving an event. This problem lead to the emergence of random-effects
models and frailty terms to measure this unobserved heterogeneity.
Traditionally used in survival or event history modeling (Box-
Steffensmeier and De Boef, 2006; Box-Steffensmeier et al., 2007), frailty
models have been widely used to improve model fit and estimate un-
biased effects under the presence of unit-level heterogeneity.

Within the context of network data, this unobserved heterogeneity
may manifest itself in influencing whether certain observations are
more or less likely to form relationships than others. Unfortunately,
failing to model this heterogeneity directly in ERGMs poses significant
inferential challenges given the excessive collinearity and subtle dif-
ferences in network dependencies (Hunter et al., 2008a). Through in-
cluding unit or group-level frailty terms, the FERGM provides a means
of accounting for this omitted variable bias and unobserved hetero-
geneity, improving model fit and the model's inferential accuracy.

2.3.3. Out-of-sample model fit
Unobserved confounding and omitted variable bias may undermine

the predictive power and model fit of ERGMs. Biased coefficients and
the inability to account for important unobserved features may create
serious problems for model fit by creating inaccurate estimates. If these
inaccurate coefficients are used to simulate networks and evaluate
model fit as described by Hunter et al. (2008a), then the model may
appear to fit poorly. Alternatively, if the observed estimates are com-
pared to those calculated on alternative realizations of the network, the
model may appear to fit poorly or the alternative realizations may
appear to be of a distinct generative process. Regardless, the problem of
unobserved confounding has significant consequences for evaluating
the fit and predictive performance of ERGMs.

The FERGM overcomes these problems by producing more accurate

9 We underscore that the goal of this piece is not to distinguish between these
models or to make the case for one over the other, but to demonstrate the
importance of accounting for unobserved heterogeneity via the FERGM with
respect to the canonical ERGM.

10 Other approaches have documented the properties of these random effects-
based network models and their asymptotic properties (Yan et al., 2018).
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effect estimates and ensuring that any unobserved confounding that
may undermine forecasts is accounted for explicitly.11 By accounting
for unit (or group) level heterogeneity, FERGMs should generally pro-
duce better fitting models out-of-sample. Indeed, never in our Monte
Carlos or the replication analyses presented in the following section, do
we find that FERGMs do not out predict their ERGM equivalent. Thus, it
appears that FERGMs appear to routinely fit better out-of-sample than
ERGMs, all while showing no significant evidence of overfitting, at least
to the extent that it would offset any gains made through including a
frailty term.

3. Replication studies

To illustrate the practical benefits of accounting for unobserved
heterogeneity with the FERGM over the ERGM, we conduct six analyses
that replicate either published analyses or findings drawn from well-
known networks. Here, we consider an ERGM fit on cross-sectional
networks with the standard no-random effects parameterization esti-
mated through MCMC-MLE to the FERGM fit on cross-sectional net-
works with unit-level random effects estimated through MPLE. We
believe this is a fair comparison since the former represents the base-
line, canonical network formation model and the latter reflects a rela-
tively simple extension to account for unit-level random effects (albeit
with a different estimation routine). Specifically, we examine the re-
lative changes in substantive inferences drawn from the models and
predictive power for ERGMs and FERGMs fit on the same network with
the same set of variables.

The six networks chosen reflect a great deal of intellectual diversi-
ty—two canonical social networks (Mesa High, Padgett's Florentine
Marriage), two International Relations networks (Military Alliances and
Militarized Interstate Disputes), one from American Politics (Regional
Land-Use Planning), and one from Neuroscience (Brain Networks).
Once we collected these networks, we estimated a well-fitting ERGM on
each of them. In each case we attempted to approximate a published
model specification associated with each network, but were typically
constrained by data availability, degeneracy, and poor model fit. Once
these well-fitting ERGMs were estimated, the corresponding FERGM
was estimated using the aforementioned MPLE routine.

When examining substantive implications, we assess how the in-
ferences made from the model estimates change and how that may
influence the theoretical and empirical conclusions drawn. While it is
impossible to know what the true effect of a particular variable might
be, we hope to underscore how the hypotheses one might conclude
supporting might change as a result of accounting for unobserved
heterogeneity through the FERGM. From comparing the ERGM and
FERGM estimates and their relative robustness, one may not be able to
definitively conclude that one better approximates reality than the
other. We hope to make the case that the FERGM estimates are more
credible through discussing what unobserved confounders may be
lurking and the relative predictive performance of the ERGM and the
FERGM. When examining predictive performance, we use a tie pre-
diction routine paralleling the one introduced by Box-Steffensmeier
et al. (2017). In this section we will begin by discussing each replication
in great detail, concluding with a discussion of our general findings.
Our findings reveal that accounting for unobserved heterogeneity
through using the FERGM has significant implications for the inferences
we draw from ERG-family models and for our ability to predict tie
formation.

3.1. Applications of the FERGM

The previous section has demonstrated the methodological ad-
vantages to using the FERGM over the ERGM, including its ability to
model unobserved heterogeneity, overcome the common problem of
degeneracy, and produce superior model fit. In this section, we illus-
trate the real world problem of unobserved heterogeneity and how it
impacts model estimation and influences the substantive implications
drawn from real world studies. In particular, we conduct six replication
analyses that take a well-known network and attempt to replicate well-
known analyses and findings using ERGMs. We then fit FERGMs and
compare the fits to assess how the substantive inferences drawn be-
tween the two change, and whether one fits better than the other.
Again, we must underscore that while we try to build the case that the
FERGM estimates should be more credible by including a frailty com-
ponent and producing better predictive accuracy, it is impossible to
know whether one model would produce inferences that reflect the
actual data generating process. We begin by examining the Mesa High
network (Hunter et al., 2008a). This network is the simulation of an in-
school friendship network that reflects a network collected in the Ad-
dHealth Study (Resnick et al., 1997). We then examine Padgett's well-
known and canonical Florentine Marriage network (Padgett and Ansell,
1993). Our third replication examines whether unobserved con-
founding impacts our support for the conventional view of military
alliance formation through analyzing the defensive commitments net-
work, a well studied network in International Relations (Cranmer et al.,
2012a,b). We then move to the network of militarized interstate dis-
putes to examine whether our inferences about a well-known empirical
regularity, the democratic peace, are impacted by accounting for net-
work effects and unit-level heterogeneity (Cranmer and Desmarais,
2011; Campbell et al., 2018). For additional diversity, our fifth exercise
examines a network that is widely known in the study of American
Politics which captures an institutional collective action context in re-
gional land-use planning networks (Gerber et al., 2013). We end with
an interesting exercise examining brain networks, an increasingly at-
tractive area for network modeling (Simpson et al., 2012; Stillman
et al., 2017).

These applications were chosen for two reasons. First, they reflect a
great deal of intellectual diversity. Second, they reflect distinct network
generative processes with acknowledged but unmodeled heterogeneity
in the motivations for tie formation. In other words, the applications
demonstrate the need for a frailty approach to ERG-modeling. For each
replication, the substantive inferences drawn from the ERGM and the
FERGM and their relative model fit vary significantly, demonstrating
how neglected heterogeneity may impact the accuracy of our in-
ferences.

3.1.1. Replication 1: Mesa high
The Mesa High network, illustrated in Fig. 1, is a network simulated

by Hunter et al. (2008a) to mirror an in-school friendship network
collected by the AddHealth Study (Resnick et al., 1997). This network,
even while simulated, is perfect for our replication study as the prop-
erties of the network are well-known. Given that it is a network simu-
lated according to a set of ERGM parameters, there should be little
improvement in model fit or changes in substantive implications when
using the FERGM as there is almost by definition no unobserved het-
erogeneity. If there was, then this may actually be cause for concern.

ERGMs (MCMC-MLE estimated) and FERGMs were fit on this net-
work using the following terms: Edges, Alternating K-Stars (α=0.6),
GWESP (α=0.2), Race Homophily, Grade Homophily, and Sex
Homophily. To be expected to be expected, there are no significant
differences between the ERGM and FERGM fits in the great majority of
inferences drawn from model estimates. As this is a simulated network
with a known generating process, there should be little improvement
from the FERGM. All terms, with the exception of Alternating K-Stars,
have similar estimates, standard errors, and significance levels. The

11 A Monte Carlo study presented in the Supplementary Information (SI)
Appendix illustrates that under a variety of very difficult conditions, such as
excluding important covariates, the FERGM will better predict tie formation
out-of-sample than the ERGM.
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difference in effects for this term is not particularly troubling. First, the
ERGM-estimated effect for this term is already fairly small with rela-
tively wide confidence intervals. As such, it is possible that even slight
changes in model specification may change the significance of this
term. Second, it is possible that our frailty term capturing unobserved
sender/receiver effects is collinear with the Alternating K-Stars term
capturing sociality/popularity effects (Fig. 2).

The comparisons made here between ERGM and FERGM fits do not
directly highlight the importance of unobserved heterogeneity for
model fit and substantive inference. They do, however, highlight that
the FERGM does not overfit the data and produce flawed inferences
when attempting to account for latent sender/receiver effects.

3.1.2. Replication 2: Florentine marriages
The Florentine Marriage Network, collected by Padgett and Ansell

(1993), is a collection of marriage alliances among Renaissance Flor-
entine families. Visualized in Fig. 3, this network is selected given its
canonical status, and as such, most readers should be familiar with the
network and its properties.

As is with prior cases, the best-fitting ERGM found and its FERGM
equivalent were fit on the Florentine Marriage network. This specifi-
cation includes the following terms: Edges, Triangles, Degree (2),
Degree (3), Wealth Absolute Difference, Priorates, and a node's Total
Ties. Are there dramatic differences in the substantive inferences drawn
from the ERGM and FERGM in this network? The answer is presented in
Fig. 4. Interestingly enough, while there are changes in the inferences
drawn from certain variables, such as Degree (2), Degree (3), and Total

Ties, many of the variables of interest such as Edges, Triangles, Wealth
Heterophily, and the number of Priorates remain unchanged. This is
interesting, as there are a variety of unobserved sender/receiver effects
that may likely be collinear with these variables, such as a family's
sociality or popularity.

Nevertheless, the relative differences in model fit and inferences
drawn underscore the importance of accounting for heterogeneity in
actors’ tie forming processes. In the following application, a more
theoretically motivated discussion is used to illustrate how these dif-
ferences may influence our knowledge about important international
phenomena.

3.1.3. Replication 3: Military alliance formation
Conventionally, countries are thought to form defensive military

alliances as responses to external threats (Carr, 1946; Morgenthau,
1948; Waltz, 1979; Walt, 1990). With the birth of quantitative studies
of alliances, however, this logic has been challenged as scholars begin
to embrace the idea that alliance decisions may be a function of power
politics (Lake, 2009), trade (Long, 2003; Powers, 2004; Sprecher et al.,
2006; Fordham, 2010), and regime change (Pevehouse, 2002). Re-
cently, research has noted that the decisions of states to form alliances
with one another may not be independently distributed, noting a strong
tendency towards triadic closure (Cranmer et al., 2012a,b).

While the gains made by Cranmer et al. (2012a) and Cranmer et al.
(2012b) are certainly dramatic, one problem that has plagued alliance
politics scholars for decades has been the ability to jointly model
complex interdependencies in the alliance network and the documented

Fig. 1. Mesa High Network. Nodes are sized and colored according to in-
creasing degree.

Fig. 2. Coefficient Plot, Mesa High Network. 95% confidence intervals presented.

Fig. 3. Florentine Marriage Network. Nodes are sized and colored according
to increasing degree.

J.M. Box-Steffensmeier, et al. Social Networks 59 (2019) 141–153

146



unobserved heterogeneity in the decision of two states to form an al-
liance (Campbell, 2018b). This heterogeneity may be considered as a
function of many unobserved sender or receiver effects, including un-
observed asymmetric gains from the alliance (Morrow, 1991), quid pro
quos (Snyder, 1997), or other idiosyncratic characteristics of leaders,
relationships, or strategic environments (Taylor, 1954; Schroeder,
1996; Bridge and Bullen, 2014).

To demonstrate how unobserved heterogeneity may impact the in-
ferences drawn from conventional ERGMs, we apply the FERGM to a
cross-sectional model approximating the Cranmer et al. (2012a) (CDK)
model specification. In particular, we examine the undirected alliance
network for a system reflecting a late stage of the Cold War, 1985. This
network is presented in Fig. 5 which reveals quite a bit of interesting
network structure. For this year we fit a model that includes Edges,
Geometrically Weighted Edgewise Shared Partners (GWESP), Militar-
ized Interstate Dispute (MID) History, Common Enemy, and Contiguity.
We also measure the difference in regime scores for the states, Regime
Difference, and a node-level covariate for state capabilities (CINC).

To get a sense of the difference in effect estimates from the ERGM to
the FERGM, we direct the reader to Fig. 6. We find three differences
between the CDK-inspired ERGM and its FERGM equivalent. First, the
state capabilities term that the ERGM finds support for, indicating that
great powers are more likely to form alliances, drops off when adding

the frailty term. Specifically, for the ERGM a positive and statistically
significant result is detected, but for the FERGM a negative effect in-
distinguishable from zero is uncovered. This increased uncertainty may
be a function of unobserved asymmetric gains associated with alliances
including great powers (Morrow, 1991). Second, the ERGM would
support the conventional logic of states forming alliances to counter
common enemies (Carr, 1946; Morgenthau, 1948; Waltz, 1979; Walt,
1990), as evidenced by the positive and statistically significant effect
size for the common enemy term. While this effect is relatively small,
when using the FERGM, however, we find that this effect is positive, but
even closer to zero with wider 95% credible intervals. This further
shrinkage towards zero from the ERGM to the FERGM may indicate that
the conventional wisdom is problematic. Third, the ERGM supports the
conventional wisdom, that two states who have previously engaged in a
militarized dispute should not align as they do not have common in-
terests and may not trust one another. We find that once the frailty term
is added, the effect estimate has greater uncertainty and the 95%
credible interval contains 0.

The previous comparison and the improvement in fit between the
ERGM and FERGM highlights that unobserved heterogeneity may
confound our ability to understand the true effects that variables have
upon the generative structure of the alliance network. While the core
finding of network analysis within the alliance literature remains, that

Fig. 4. Coefficient Plot, Florentine Marriage Network. 95% confidence intervals presented.

Fig. 5. Defensive Pact Network, 1985. Nodes are sized and colored according to increasing degree.
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there is a tendency towards triadic closure, many of the foundational
insights from realist and bargaining theories of alliance formation may
be problematized.

3.1.4. Replication 4: Militarized interstate disputes (MIDs)
The democratic peace, an empirical finding that two democracies

are less likely to fight one another, has been so robust that many have
referred to it as the first law of international politics (Levy, 1998;
Hegre, 2014). Increasingly, there has been attention paid to under-
standing the mechanisms underlying the democratic peace. For ex-
ample, early work emphasized normative or institutional explanations
(Maoz and Russett, 1993; Russett, 1994), only to turn to other factors
collinear with regime type (Gartzke, 2007; Dafoe et al., 2013), with a
recent increasing emphasis on network explanations (Cranmer and
Desmarais, 2011; Campbell et al., 2018). With this turn towards net-
work explanations, and the widely known heterogeneity that plagues
militarized interstate disputes data (Box-Steffensmeier et al., 2003b,a),
the study of MIDs seems a perfect application for the FERGM. A cross-
section of this network is visualized in Fig. 7 for 1939.

Unobserved heterogeneity in the causes of conflict may take a
variety of forms, including leader or populace-based factors. For ex-
ample, it would be difficult to explicitly model the factors that lead
Hitler to be more aggressive and initiate World War 2. To demonstrate

how this heterogeneity may influence the inferences drawn, we apply
the FERGM and ERGM to a cross-sectional model approximating the
Dafoe et al. (2013) model specification. In particular, we focus on the
network of militarized disputes for 1939 that is of interest to many.

The best fitting ERGM found and its FERGM equivalent were fit with
the following terms: Edges, Alternating K-Stars (α=0.75), GWESP
(α=0.3), Capability Ratio, Highest Composite Index of National
Capabilities (CINC) Score, Number of States in the System, Alliance
Pact, and Weak-Link Regime Score. The democratic peace would be
uncovered by a negative and statistically significant effect for the Weak-
Link Regime Score dyad covariate which is measured as the lowest
Polity score within a dyad (Marshall et al., 2002). As the value for this
variable increases, a dyad becomes more democratic.

Fig. 8 presents the changes in effect estimates when accounting for
unobserved heterogeneity. Interestingly, the substantive inferences
drawn from the models differ significantly. Many of the estimates that
are significant in the ERGM are insignificant in the FERGM, including
Capability Ratio, CINC, Alliance Pact, GWESP, and Weak-Link Regime
Score. Only the Alternating K-Stars went from insignificant to sig-
nificant. Most importantly, perhaps, the democratic peace, represented
by a negative effect for Weak-Link Regime Score, uncovered when using
the ERGM is not detected when using the FERGM. In the ERGM a ne-
gative and statistically robust effect at p < 0.05 is detected for the

Fig. 6. Coefficient Plot, Alliance Network. 95% confidence intervals presented.

Fig. 7. Militarized Interstate Dispute Network, 1939. Nodes are sized and colored according to increasing degree.
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Weak-Link Regime Score variable. While this effect is close to zero,
once when a frailty term is included the effect becomes positive and
statistically insignificant. In other words, when failing to account for
heterogeneity in sender-receiver effects using the ERGM, the demo-
cratic peace is uncovered. This potentially underscores the importance
of accounting for heterogeneity, that when using FERGM, the demo-
cratic peace is problematized.

This finding may shed light on one of the most important literatures
in international relations. While some effects remain unchanged, such
as the edges term or the number of states in the system, the majority of
variables’ effects change in interesting ways that may highlight the
importance of sender or receiver effects, such as leader-based attributes
like psychology, or populace-based attributes like shared identity.

3.1.5. Replication 5: Regional planning networks
Observers of politics, professional and casual alike, are often inter-

ested in the degree to which actors with similar political views interact
or collaborate. Homophily is well established in a variety of networks
(McPherson et al., 2001; Fowler et al., 2011; Sinclair, 2012; Victor
et al., 2016), and in networks of political actors, those with similar
political views are thought to affiliate at higher levels (Huckfeldt and
Sprague, 1995). Political homophily is now taken as a given in many
social networks, and in fact is steadily becoming an empirical regularity
(Fowler et al., 2011). This phenomena is well documented, and the
desire of individuals to select their alters based upon political similarity
has caught national attention – political homophily is being used to
explain the spread of misinformation and fake news, political polar-
ization, and ultimately Brexit and the election of Donald Trump
(Margetts, 2017).

One prominent example from this literature is Gerber et al. (2013)
(GHL). GHL examine political homophily in the context of land-use
planning, which can influence a community's development, social
structure, tax base, and quality of life (Levy, 2009). Land-use planning
refers to the collaboration and competition among local governments to
create land-use plans and zoning ordinances to specify allowed devel-
opment levels. Regional land-use planning, the interest of GHL, refers to
attempts to mitigate the negative spill-over effects associated with local
land-use planning by encouraging collaboration among regional actors
to address common goals. GHL are less interested in the actors and
more interested in homophily within political networks, and in parti-
cular, within institutional collective action (ICA) contexts where actors
weigh the benefits and transaction costs from interaction. Theoretically,

GHL argue that political homophily reduces transaction costs as similar
groups may have more common policy objectives, and as such, face
fewer costs from their selectorates. Nevertheless, unobserved hetero-
geneity may confound our ability to truly understand the effect of po-
litical homophily on the generative process for land-use collaboration
networks. This unobserved hetereogeneity may take the form of latent
confounders, including the industries that may exist in two counties.

To examine the effect of these unobserved confounders on the in-
ferences drawn from the GHL ERGM fit on their land-use planning
network, we apply the FERGM to an approximate replication of their
model. The land-use planning network in presented in Fig. 9. To ap-
proximate GHL's Model 2, we include the following terms: Edges,
Geometrically Weighted Edgewise Shared Partners (GWESP), Geome-
trically Weighted Dyadwise Shared Partners (GWDSP), Political
Homophily, the distance in cities in terms of the percentage of the
population that is Latino (Percent Latino), and Median Household In-
come. This closely mirrors GHL's Model 2 specification, save Alter-
nating K-Stars, which are excluded as they produce an ill-fitting and
degenerate model.12

Important and dramatic changes occur when using the FERGM, as
evidenced by the effects presented in Fig. 10. First, and foremost, the
positive and statistically significant effect for the Party Registration
variable that GHL rely upon becomes negative and insignificant when
accounting for unobserved heterogeneity. In other words, it appears
that political homophily may not influence collaboration in the land-
use planning network. In addition, we find that the GWDSP has no
effect in the ERGM, but it is negative and statistically significant in the
FERGM, while income is significant in the ERGM but not in the FERGM.
However, the GWESP remains positive across the models, indicating a
strong tendency towards triadic closure within this network. Similar to
the previous case, this demonstrates that unobserved heterogeneity
may confound the substantive effect of key variables of interest.

The previous application has demonstrated that unobserved het-
erogeneity may confound the ability to cleanly study effects of interest,
including foundational findings like homophily in political networks.
When accounting for unobserved confounders, analysts can be more
confident that they have gotten a clean read on effects of interest, and
given the improved predictive performance, inferences may be more

Fig. 8. Coefficient Plot, Militarized Interstate Dispute Network. 95% confidence intervals presented.

12 This particular model is chosen given the availability of replication ar-
chives suitable for our purposes.
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credible.

3.1.6. Replication 6: Brain networks
In another interesting application, Simpson et al. (2012) argue that

ERGMs are useful for modeling brain networks, providing a means of
understanding complex brain function and how it may change. This
ERGM based approach may be preferable to using correlation networks
as it explicitly accounts for patterns in brain topology. However, it is
possible that due to individual-level variation, there may be hetero-
geneous differences in tie formation across and within brain networks.
Illustrated in Fig. 11, examining this network offers an opportunity to
demonstrate that heterogeneity in tie formation occurs in both biolo-
gical and social life.

To explore the role of heterogeneity in a brain's topological orga-
nization, we fit a FERGM on the brain network of Simpson et al.'s
(2012) Subject 12. For these fits, we include the same terms as Simpson
et al. (2012), Edges, GWNSP (α=0.75), and GWESP (α=0.75). When
fitting the ERGM, the inferences drawn in the original work do not
differ from those indicated in Fig. 12. However, when using the FERGM
the inferences drawn from these results change for two of three vari-
ables. Both the Edges and GWESP terms are found to be significant in
the ERGM, only to have null effects in the FERGM. Only GWNSP has a
consistent effect that does not differ across models. The results

presented here illustrate how nodal heterogeneity may influence the
inferences drawn even ewhen analyzing biological networks, in this
case brain networks. While it is unclear what this heterogeneity means
in substantive terms, it may have important implications for predicting
brain topology.

3.2. General findings

While the prior sections have discussed the inferential differences
between the conventional ERGM and FERGM within particular cases,
here we emphasize the general patterns uncovered. In aggregate, we
find that inferences drawn from FERGMs differ from those drawn from
ERGMs in important and theoretically intuitive ways. The FERGM also
predicts, on average, much better than the ERGM out-of-sample. We
will discuss each of these aggregate findings in the following pages.

3.2.1. Theoretical and empirical implications for substantive networks
Using the fits from the previously discussed applications, we ex-

amine the change in the substantive conclusions drawn from the ERGM
and the FERGM for each of six networks used. To do so, we look for the
covariates that have the same substantive conclusion (interpreted as
common sign and significance for both the ERGM and FERGM). Not
only does the FERGM demonstrate superior model fit, but, overall, the

Fig. 9. Land-use Planning Network. Nodes are sized and colored according to increasing degree.

Fig. 10. Coefficient Plot, Land-use Planning Network. 95% confidence intervals presented.
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substantive implications one may draw from these applications changes
dramatically as well. Table 1 demonstrates that by accounting for unit
frailty there are often dramatic changes in the substantive implications
drawn from the model. This variation is not just among exogenous
nodal or edge covariates, but also occurs among endogenous terms.

3.2.2. Predictive performance for substantive networks
To better understand the improvements made through accounting

for unit-level heterogeneity, we move to an out-of-sample predictive
exercise mirroring that introduced by Box-Steffensmeier et al. (2017).
For the estimated ERGM, 500 networks were simulated and then the
percentage of correctly predicted ties based upon the estimated para-
meters were calculated. Then, for the FERGM, we calculated the pre-
dicted probability of a tie for each of the 500 posterior draws from the
parameter estimates. These probabilities were then used to simulate ties
according to a Bernoulli distribution for each dyad in the network. We
then compared the FERGM predicted ties to the observed ties and cal-
culated the percent correctly predicted to get a quantity comparable for
the ERGM simulations. Across all 500 simulations we are left with two
quantities: the mean percentage of ties correctly predicted by the ERGM
and the mean percentage of ties correctly predicted by the FERGM.
These can be compared to assess which has superior model fit.

The results of this exercise are presented in Fig. 13. The percent
improvement is calculated as the difference in the mean accuracy of tie

prediction for the FERGM relative to the ERGM across 500 simulations.
In each application, except the Mesa High Network, there is a fairly
large increase in the percent of ties accurately predicted by using the
FERGM. The ERGM outperforms the FERGM by only .06% in the Mesa
High Network, which makes sense as the Mesa High Network is itself
simulated from an ERGM fit on an AddHealth network (Hunter et al.,
2008). As this is a simulated network with a known generating process,
there should be a minuscule difference in predictive model fit when
using the FERGM over the ERGM.

Across the other networks, there is a consistent improvement in
predictive accuracy, though the degree of improvement varies. The

Fig. 11. Subject 12 Brain Network. Nodes are sized and colored according to increasing degree.

Fig. 12. Coefficient Plot, Subject 12 Brain Network. 95% confidence intervals presented.

Table 1
Change in Substantive Interpretation of Covariate Effects. Percentages
calculated by taking the percentage of total covariates in the model that either
had the same sign and significance between the ERGM and FERGM (same ef-
fect) or changed in sign and significance between them (different effect).

Same Effect Different Effect

Brain Networks 33.3% 66.6%
Militarized Interstate Disputes (MIDs) 25% 75%
Mesa High 83.3% 16.6%
Regional Planning 50% 50%
Florentine Marriage 57.1% 42.9%
Military Alliances 57.1% 42.9%
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improvements made by FERGM over the ERGM in accurately predicting
ties are 1.4% in the Military Alliance Network, 1.7% in the Planning
Network, 2% in the Disputes Network, and 3.1% in the Brain Network.
The greatest improvement is made in the Florentine Marriage network.
When comparing model fit via tie prediction here, the FERGM fairs
much better than the ERGM, yielding an improvement greater than
10%. Naturally, individuals and families in Renaissance Florence may
have heterogeneous reasons or incentives for marrying one another.
While the relative wealth of families or their political power may ex-
plain marriage, there are a variety of interpersonal and member-variant
factors that may attract some members to one another.

4. Concluding thoughts

With the increasing prevalence of the conventional cross-sectional
parameterization of the ERGM, scholars need to be increasingly aware
that unobserved unit or group-level heterogeneity may pose a set of
inferential challenges in applying these models. Often times, this het-
erogeneity and the omission of important variables may lead to a de-
generate model specification. In other cases, models may estimate but
the effects identified may be biased and confounded by heterogeneity.
With great computational power comes great analytic re-
sponsibility—even if ERGMs can be estimated, the effects identified
may be biased by the presence of unobserved confounding.

Take the case of military alliance formation, diplomatic historians
have long acknowledged that actors have various incentives for signing
alliance treaties (Taylor, 1954; Morrow, 1991; Schroeder, 1996).
Measuring these incentives directly has long eluded scholars; while
capturing heterogeneity in alliance formation through frailty-based
linear models may be possible, it comes at the cost of ignoring the
network dependencies that are known to influence alliance formation
(Cranmer et al., 2012a,b). The FERGM offers an opportunity to capture
both of these factors simultaneously. Doing so reveals evidence that the

long-dominant paradigm for considering alliances, that states form
them to counter external threats, may be impacted by omitted variable
bias and unobserved hterogeneity. Similar patterns hold when ex-
amining Regional Planning, wherein partisan homophily may not
matter as much as previously thought, or in the application to mili-
tarized disputes where the democratic peace, an empirical regularity
approaching law-like status, is not uncovered. The applications pre-
sented in this piece—while ranging markedly in academic dis-
cipline—all show significant evidence for how unobserved hetero-
geneity manifests itself and has consequences for our inferences.

As our six applications have illustrated, this bias may create non-
trivial inferential errors and undermine the accuracy of model forecasts.
Fortunately, a solution exists that works fairly well in these cases and
should do so beyond them where unobserved heterogeneity is likely.
The FERGM offers an opportunity to overcome the problems of model
degeneracy, inferential errors, and poor model fit that stem from sender
or receiver unobserved heterogeneity all within the standard and
simple frequentist framework of the original, canonical ERGM.

Appendix A. Supplementary Data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.socnet.2019.07.002.
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