
4 The Political Methodologist, vol. 17, no. 1

programming languages,7 and be proficient in the twenty
most frequently used Unix commands. Calculus was fine for
Gauss and the Bernoullis, but this “Party like it’s 1827!” ap-
proach to methodological pedagogy in the twenty-first cen-
tury has some limitations.

Finally, we need to engage the policy community as
assertive professionals based on the rich knowledge that we
bring as political methodologists. We suggest revisions, we
debate, we cajole, we use the best available techniques but
point out their flaws as well as virtues and—critically—we
turn down work when it doesn’t make any sense.

Those who reject engagement with the policy com-
munity will quickly point to the risks—and they are real—of
large-scale applied projects.8 And such projects are not al-
ways easy—there have been many times when dealing with
multiple layers of bureaucracies, contractors, and poorly-
framed requirements that I’ve thought that it might be nice
to just go back to, say, writing theoretical papers demon-
strating that World War I couldn’t occur, and therefore
didn’t. But systematic political analysis is being done, and
because of the technological imperatives I noted earlier, it
is going to be done whether political methodologists are in-
volved or not. I believe that with our expertise in theory,
design and method, it will be done better if our community

is involved. There are risks in getting involved, but I believe
the risks in not getting involved are even greater.

The question of whether any scientific community
should engage in issues of practical import is not new: this
issue (as well as the issues of openness and replicability) was
at the core of Francis Bacon’s foundational work in the early
seventeenth century on what became the modern scientific
approach. Of course, in the universities, Bacon’s approach
would continue to lose out to the established Scholastic ap-
proaches for the better part of three centuries.9

Several of our cognate disciplines—economics, de-
mography and epidemiology—resolved this issue some time
ago, as did the applied field of election forecasting. But for
the most part we’ve lagged, and most (all?) of the twenty
or so graduate programs capable of training (and innovat-
ing) in state-of-the-art methods seem to actively discourage
students from pursuing a policy-oriented track despite the
availability of jobs and funding. The prospect of publishing
an incremental contribution to normal science in the APSR
is still seen as superior than doing technical political anal-
ysis that can involve stakes of millions or even billions of
dollars, and/or hundreds or even thousands of lives. I’m
not convinced we serve ourselves and our communities well
in that regard.

Computing and Software

A Note on Speeding Up R for Windows

Dino P. Christenson and Joshua A. Morris

The Ohio State University
christenson.24@polisci.osu.edu morris.521@polisci.osu.edu

Abstract

To what extent do different Windows PC characteristics in-
crease the modeling efficiency of R? Do some programs or
versions of R run better on different PCs? And for which
kinds of models do enhanced PCs and clusters diminish pro-
cessing time? This research note seeks to provide novice to
intermediate level R users with a framework for understand-
ing the benefits of explicit parallel processing and upgrades
in PC hardware for large datasets and computationally bur-
densome models. We compare the relative benefits of each

optimization with simple efficiency tests. In addition, we
provide basic R code to make the transition to parallel pro-
cessing easier for novice users without networked labs or
cluster access.

Introduction

Today the onus of statistical modelling derives from two
major sources: statistical knowledge and computational re-
sources. This note concerns the latter. Computational re-
sources are not limited to the operating system (OS) and

7except LISP
8Hint: before engaging in such a debate, get a promise that the first party to use the word “prostitute” has to buy a round of beer.
9And during the heyday of post-modernism in the 1990s, even Scholasticism was looking pretty good.
The authors’ names are listed alphabetically. The authors would like to thank members of the Program in Statistics and Methodology (PRISM)

and the Political Research Laboratory (PRL) at Ohio State University for encouragement and computing resources, particularly Professors Janet
Box-Steffensmeier and Luke Keele as well as PRL staff Bill Miller and Isaac How; all errors are the sole responsibility of the authors. While the
PRL at OSU uses Windows PCs and servers, both authors would like to note that they use Macs at home. Additional information, R code and
related resources can be found at http://polisci.osu.edu/prism/resources.htm.

The Political Methodologist, vol. 17, no. 1 5

statistical package employed. As Sekhon (2006) notes, some
operating systems are generally more efficient than others
(Linux is faster than Windows XP which is faster than Mac
OS X, unless the memory allocation is replaced); such is the
case with statistical programs as well (Matlab is faster than
R which is faster than Stata). However, substantial gains in
speed can also be made within a chosen operating system
and statistical package. Small upgrades in basic hardware,
reformatting the data, allocating the memory and engaging
explicit parallel processing all lead to relatively large jumps
in the computational efficiency of statistical modelling.

We measure the extent to which hardware, package
versions, cluster processing and data formatting increase the
processing speed of statistical models. We focus exclusively
on the interaction between the Windows XP and Vista OSs
and the R statistical environment. R is increasingly popular,
open source, free and, according to a recent New York Times
article, “easy to use” for “statisticians, engineers and scien-
tists without computer programming skills” Vance (2009).
Windows, while not the statistician’s current OS of choice, is
the most prevalent OS in the world. Among Windows OSs,
XP is the most common and Vista the latest version 1. It is
clear that regardless of the OS preferred by statisticians and
programmers, the bulk of novice to intermediate applicants
of statistics are still running their models on Windows. In
addition, the abundance of R packages and vignettes con-
tinually make R more user-friendly to a broad spectrum of
statistical modellers. Accordingly, the complex algorithms
involved in various popular models can be employed without
a programming background.

We believe, however, that the move to making effi-
ciency gains in processing speed has not been dealt with
as seamlessly as with the other aspects of statistical mod-
elling. While intermediate users may make use of the models
so neatly packaged in R, the benefits from such models may
be mitigated by the computational burden. Should the costs
be too high, students and scholars may be discouraged from
using the appropriate model, in favor of less computation-
ally intensive models and, at worst, inappropriate ones. Ul-
timately, we find that efficiency gains can be made through
slight tweaks in the processing, hardware, version and data
of models, while holding the basic OS and statistical pack-
age constant. Thus all hope for efficiency gains is not lost
for Windows-based R users.

Efficiency Testing

Benchmarking processing speeds have been based on a host
of models, most notably on Genetic Matching (Sekhon 2006)
and bootstrapping (Rossini 2003). While the model chosen
for the benchmarks will undoubtedly influence the process-
ing speed, Sekhon (2006) recommends approaching bench-
marking as a deterministic process. As such, the particular
algorithm employed by the model is not critical, so long as
it is consistent across machines and that one controls for the
potential confounding factors. Given a lack of unobservables
in computers, efficiency gains can be measured by holding
all hardware and software constant and merely changing the
variable of interest.

We test the processing speed with the boot func-
tion (Canty 1997). The boot function calls forth bootstrap-
ping, a resampling method for statistical inference (Davi-
son 1997, see also Keele 2008). While conceptually simple,
bootstrapping is computationally intensive, often requiring
thousands of sample replications. We follow Example 6.8
used in Davison (1997) and subsequently in Rossini’s (2003)
paper on simple parallel computing in R. The example seeks
to demonstrate the benefit of bootstrapping on estimating
the cost of constructing power plants. In the benchmarking
that follows we generate bootstrap samples of a generalized
linear model fit on the familiar nuclear data (Cox 1981).
The data is comprised of the eleven variables including the
dependent variable, the cost of the construction in millions
of dollars, date of the construction permit and nine other
seemingly relevant independent variables.

We begin by testing four different R compositions on
the six different machines available in the PRL (see Table
1).2 The different machines are identical in terms of loaded
software and the version of R (2.8.0). Therefore we simply
note the difference in allotted RAM, GHz, processor type,
number of processors and OS, and compare the time to com-
pletion for our bootstrapping models across the machines.
In each case, we run the model five times on each machine
and present the average processing time across the five runs.
Later we consider the potential benefit from a commercial
version of R and explicit cluster processing relative to our
standard R baseline. We conclude with a couple of simple
tests of the benefits of data formatting and memory alloca-
tion.

1See W3 for a comparison of OS usage at http://www.w3schools.com/browsers/browsers_os.asp

2Note that the available machines do not allow for perfect control of the potentially confounding factors within a computer. The available
machines are such that it is not possible for us to test the impact of, for example, the move from one GB of RAM to two GBs without also changing
the GHz or some other feature. Thus the increase in efficiency from such a move cannot be attributed solely to the increase in GB or RAM, per
se, but to an increase in both variables.

6 The Political Methodologist, vol. 17, no. 1

Table 1: Machines and Programs Tested

RAM Processor Speed Multi
Machine Program in GB Number in GHz Core OS
HP 4100 R .5, 1, 1.5, 2 1 2.8 no XP

REvolution .5, 1, 1.5, 2 1 2.8 no XP
R Snow .5, 1, 1.5, 2 1 2.8 no XP
ParallelR .5, 1, 1.5, 2 1 2.8 no XP

Optiplex 280 R .5, 1, 1.5, 2 1 2.8 no XP
Revolution .5 1 2.8 no XP
R Snow .5 1 2.8 no XP
ParallelR .5 1 2.8 no XP

Optiplex 620 R 1, 2, 3, 4 1 3.2 partial Vista
REvolution 2 1 3.2 partial Vista
R Snow 2 1 3.2 partial Vista
ParallelR 1 1 3.2 partial Vista

Optiplex 755 R 1, 1.5, 2, 2.5, 3 1 2.83 yes Vista
REvolution 1, 1.5, 2, 2.5, 3 1 2.83 yes Vista
R Snow 1, 1.5, 2, 2.5, 3 1 2.83 yes Vista
ParallelR 1, 1.5, 2, 2.5, 3 1 2.83 yes Vista

32 Bit Stats R 1, 2, 3 1 2.4 yes XP
REvolution 3 1 2.4 yes XP
R Snow 3 1 2.4 yes XP
ParallelR 2 1 2.4 yes XP

64 Bit Stats R 1, 2, 3, 3.5 2 3.2 partial XP
REvolution 1, 2, 3, 3.5 2 3.2 partial XP
R Snow 1, 2, 3, 3.5 2 3.2 partial XP
ParallelR 1, 2, 3, 3.5 2 3.2 partial XP

The Political Methodologist, vol. 17, no. 1 7

Hardware
Upgrades in computer hardware are intended to

make applications run smoother and quicker. It should be
expected that hardware makes a difference in the processing
speed of statistical models. We test six basic hardware fac-
tors, and hence what kind of machine composition should
be used for the most efficient results, specifically: proces-
sor type, processor speed, number of processors, and the
amount of RAM installed.

Figure 1: Hardware Processing Time: Memory and Speed

Opt 280 HP 4100 Opt 620 Stat 64b Stat 32b Opt 755

4.0 GB
3.5 GB
3.0 GB
2.5 GB
2.0 GB
1.5 GB
1.0 GB
0.5 GB

Type of Computer

R
un

tim
e

(S
ec

on
ds

)

0

5

10

15

20

The cluster of bars denote different RAM configurations on each

computer. Thus a gap between the bars are indicative of a missing

RAM configuration for that computer.

Figure 1 shows that computer speed (GHz) has a
minimal effect on processing time. The differences in the
amount of RAM serves to increase speed for systems 2GB
or greater, ortherwise it too has only a small effect on mod-
eling efficiency. Contrarily, Figure 2 suggests that the type
of processor, specifically if it is true multicore or not, is very
influential. This is particularly surprising given that R does
not make use of multithreaded processing (at least as of
version 2.8.0). In our computation intensive test, low speed
multicore processor systems perform the best. This is likely
due to the fact that the processor can handle background
system tasks with one core while devoting the other core to
R, preventing a continual tradeoff that takes place in single
core systems.

Commercial Software
REvolution R by REvolution Computing is a com-

mercial version of R built on the open source code base. It
uses additional commercial packages and optimizations in
an effort to run “many computationally-intensive programs
faster.” It is currently a free download with registration.
We find that REvolution R outperforms the basic R in our
test model across a variety of hardware. The performance

increase was small, between 1.33 percent and 2.25 percent,
but consistent (see Figure 3). The increase in speed was
greatest for multicore processors, both greater than 2.24
percent.

Figure 2: Hardware Processing Time: Processor Core(s)

Core 2 Duo Core 2 Duo Pentium D Partial Pentium 4 No Pentium 4 No

Core(s)

R
un

 T
im

e
(s

ec
on

ds
)

0
5

10
15

20

Multicore indicates two cores on a single die; the Pentium D

is technically a dual core processor but the cores reside on two

dies instead of one. For these tests it is considered partial multicore.

The Pentium 4 No refers to a simple Pentium 4 processor without

multicore. The bars denote different computer configurations.

Figure 3: Percent Increase in Efficiency of REvolution R

Opt 280 HP 4100 Opt 620 Stat 64b Stat 32b Opt 755

4.0 GB
3.5 GB
3.0 GB
2.5 GB
2.0 GB
1.5 GB
1.0 GB
0.5 GB

Type of Computer

Ef
fic

ie
nc

y
In

cr
ea

se
 (P

er
ce

nt
)

0

1

2

3

4

Parallel Processing
In computational problems the ability to process sec-

tions in parallel is highly appealing, however paralleliza-
tion is not widely used. The surprising lack of use is per-
haps an indicator of the troubles encountered when the sta-
tistical modeller encounters features of the programming

8 The Political Methodologist, vol. 17, no. 1

world. The computational difficulties encountered with par-
allel processing can be daunting for non-programmers.3. In
explicit parallelization, the modeller dedicates different pro-
cesses to different processors or computers. The processor
which makes the calls is typically referred to as the master
and the processors that carry out their given activities, the
slaves. By dedicating different processes to different clus-
ters, the statiscal program on the master node is able to
take advantage of the division of labor. Each slave node is
able to concentrate on its particular task and the master
collects and organizes the results. In time-intensive mod-
elling this division of labor can create enormous gains in
efficiency.

We use the R package, snow, which appears to be the
most common package for explicit parallelization and fairly
user-friendly.4 In our tests, the bootstrapping is broken up
from a single set of 1000 replicates to parallel runs of 500
for a size two cluster and runs of 250 for a size four cluster.
Each section of replication commands is submitted to a clus-
ter node, where the nodes are a part of a socket cluster on
the local machine. Thus we run our parallel tests on a single
computer. While many advanced modellers have access to
(Beowulf) clusters or networked labs, we demonstrate that
efficiency gains can be made from parallel processing for
novice to intermediate level users with access limited to a
single machine. This means that our results can be repli-
cated should one not have access to a networked laboratory
of computers or a sophisticated cluster.5

Given a single machine, the process for paralleliza-
tion in snow can be reduced to 5 simple steps. We begin by
installing and loading the appropriate package.

load snow library

library(snow)

Next, we create clusters on our computer. We utilize the
makeCluster command to seek out nodes on the local host
and specify the number of nodes to enter the cluster. Here,
we also specify the type of connection between nodes: sock-
ets, in our case, but MPI, and PVM connections are also
permitted.

makes a local socket cluster of size 4

c1 <- makeCluster(4, type="SOCK")

We can check the names and kind of processors that make
up the cluster nodes with clusterInfo or clusterCall.
Leaving the function expression blank returns the specified
information.

test cluster nodes to see name and machine

clusterCall(c1, function() Sys.info()[c("nodename",

"machine")])

We utilize clusterEvalQ to evaluate a specified expression
on each node. Per our example, we call it to examine the
boot function for every node on the cluster.

load boot library to cluster

clusterEvalQ(c1, library(boot))

We revisit the clusterCall command to collect the infor-
mation performed at each node. clusterCall is the main
function of the parallelization. clusterCall specifies argu-
ments to be performed on each slave node and returned to
the master. Finally, do not forget to call stopCluster at
the end; otherwise, the clusters will remain connected.

bootstrapping on a cluster of size 4

clusterCall(c1,boot,nuke.data,nuke.fun,R=250,m=1,

fit.pred=new.fit,x.pred=new.data))

cleans up cluster and stops it

stopCluster(c1)

Figure 4: Percent Increase in Efficiency of Parallel
Processing with 2 Clusters

Opt 280 HP 4100 Opt 620 Stat 64b Stat 32b Opt 755

4.0 GB
3.5 GB
3.0 GB
2.5 GB
2.0 GB
1.5 GB
1.0 GB
0.5 GB

Type of Computer

Ef
fic

ie
nc

y
In

cr
ea

se
 (P

er
ce

nt
)

0

20

40

60

80

3In fact, so many “user-friendly” parallel tools are in development that deciphering between them can be difficult. For example, there is an R
Parellel at http://www.rparallel.org/ that has the same objectives as REvolution’s Parallel R, but is unrelated. We have not yet experimented
with the former resource.

4R offers a host of parallel computing options. A list of R resources on parallel computing are available online at cran.r-project.org/web/

views/HighPerformanceComputing.html. Our parallel clustering section and bootstrap model follows Rossini (2003) closely.
5We would expect efficiency gains from networked computers or clusters to be even greater given more time-intensive tasks.

The Political Methodologist, vol. 17, no. 1 9

Figure 5: Percent Increase in Efficiency of Parallel
Processing with 4 Clusters

Opt 280 HP 4100 Opt 620 Stat 64b Stat 32b Opt 755

4.0 GB
3.5 GB
3.0 GB
2.5 GB
2.0 GB
1.5 GB
1.0 GB
0.5 GB

Type of Computer

Ef
fic

ie
nc

y
In

cr
ea

se
 (P

er
ce

nt
)

0

20

40

60

80

Figures 4 and 5 show that the speed-up is substan-
tively large in our test for machines with partial or full mul-
ticore. Multicore machines perform better than their non-
clustered counterparts by over 45 percent. Single core ma-
chines see only a slight advantage, performing with less than
a 1 percent speed increase over their non-clustered counter-
part. We note that additional nodes do not always increase
performance, as the overhead of the nodes increases with
each additional node.

REvolution Computing also offers ParallelR with En-
terprise, a version that includes support and automated par-
allel processing and optimization.6 We compare the auto-
mated parallel processing in Enterprise with our basic R
results. We found ParallelR especially user-friendly. The
installation was quick and simple. The automated com-
mands were intuitive and the move to running the new boot

command was as simple as writing bootNWS. However, we
do not witness any efficiency gains from the ParallelR pro-
gram. Contrary to our expectations, the move to ParallelR
resulted in decreases in efficiency for all machine compo-
sitions and for both size two (see Figure 6) and size four
clusters (see Figure 7).7 The results suggest that efficiency
gains from parallel processing are not constant across com-
puter compositions or types of clusters.

Figure 6: Percent Decrease in Efficiency of ParallelR
Processing with 2 Clusters

Opt 280 HP 4100 Opt 620 Stat 64b Stat 32b Opt 755

4.0 GB
3.5 GB
3.0 GB
2.5 GB
2.0 GB
1.5 GB
1.0 GB
0.5 GB

Type of Computer

Ef
fic

ie
nc

y
D

ec
re

as
e

(P
er

ce
nt

)

0

−20

−40

−60

−80

−100

−120

−140

Figure 7: Percent Decrease in Efficiency of ParallelR
Processing with 4 Clusters

Opt 280 HP 4100 Opt 620 Stat 64b Stat 32b Opt 755

4.0 GB
3.5 GB
3.0 GB
2.5 GB
2.0 GB
1.5 GB
1.0 GB
0.5 GB

Type of Computer

Ef
fic

ie
nc

y
D

ec
re

as
e

(P
er

ce
nt

)

0

−20

−40

−60

−80

−100

−120

−140

Other Recommendations
R programmers and researchers familiar with the me-

chanics of R have proposed additional time saving methods.
Lumley (2005) of the R Core Development Team has noted
various optimizations for R code, including but not limited
to the following: data frames are much slower than matrices

6REvolution Computing was kind enough to allow us to test their ParallelR for free. More information on REvolution is available at their
website http://www.revolution-computing.com/

7It is important to note, however, that we are dealing with a moderately time-intesive model, given our small dataset. In such cases, the amount
of overhead it takes to supply the machine with directions for parallel processing may not be recouped by any increase in processing speed from
the parallelization. In addition, it is possible that some of these programs are more efficient when run through a network cluster than on a single
machine.

10 The Political Methodologist, vol. 17, no. 1

(especially large ones); functions that have few options and
little error check are faster; and allocating memory all at
once is faster than incremental allocation.

Figure 8: Processing Time of Data Frames and Matrices

0 2000 6000 10000

0
20

40
60

80
10

0

32 Bit

Repetitions

R
un

 T
im

e
(s

ec
on

ds
)

0 2000 6000 10000

0
20

40
60

80
10

0

64 Bit

Repetitions

R
un

 T
im

e
(s

ec
on

ds
)

0 2000 6000 10000

0
20

40
60

80
10

0

HP

Repetitions

R
un

 T
im

e
(s

ec
on

ds
)

We confirm these recommendations with some sim-
ple tests. We begin by running a test of the speed of data
frames versus matrices. In the R environment, data frames
can contain elements of mixed types while a matrix may
contain elements of only one type. The test used a modified
version of the nuclear data, called nuclearbig, a larger
variant of nuclear created by duplicating the data many
times over. The test consisted of comparing the differences
between multiplications of the data as a matrix and as a
data frame. We find that the time difference is greatest for
a large number of calculations, so it is the most valuable to
check what form your data is in for repeated tasks. Overall,
the speed increase of using a matrix instead of a data frame
in our test was around 98 percent (See Figure 8).8

We also checked to see if functions that have
few options and little error checking are faster. Using
sum(x)/length(x) in comparison to mean(x) we confirm
our expectations; however, the speed difference is quite min-
imal for a small number of replications (see Table 2). In
fact, we repeat the calculation 30,000 times before a notice-
able time difference occurs. Even in this case the actual
reduction was very small, less than one second. While this
could result in a slight increase in speed for large repetitons,
above the tens or hundreds of thousands, it is unlikely to
be of substantive help otherwise. Of course, this is only one
function and other function replacements may be more or
less effective, but beyond this note.

We also find that memory allocation has a high
overhead. We test the value of allocating memory all at
once instead of incremental allocation by loading two vari-
ables full of numbers using a simple function similar to
the example above. When allocating memory first using
y <- numeric(30000) in Table 2 we find an average speed
increase of 93 percent. A careful look at algorithmic ap-
proaches such as this one could make a strong difference

to the run-time of the program. Of note, this optimization
changes the test time from 5 seconds to 0.25 seconds on the
HP 4100.

Conclusions

For the most efficiency in computationally intensive tasks
in R, use multicore processor machines, if possible. Again,
the gains from such a framework will not be evident on sim-
pler models or with small to medium sized datasets, but
with time-intensive models or extremely large datasets sig-
nificant boosts in efficiency can be gained from utilizing the
best available machines.

Programs such as REvolution R can be helpful for
code that is not easily broken up for parallelization or
projects which are not large enough to justify R coding
tricks or rewrites; however the benefits are small relative to
the other available optimizations. For computations that
can be explictly parallelized, the snow package could be
used to decrease time dramatically, even on a single ma-
chine. For bootstrapping, matching and Bayesian models,
the availability of multicore processing and explicit parallel
processing can be quite helpful. In these same situations it
is also helpful to allocate the memory up-front. However
we did not find all parallel programs to increase efficiency
equally across machine compositions, and some not at all.
To that end we believe that developers need to better specify
the expected efficiency gains from their programs and pack-
ages, and do so with some attention to different computer
compositions.

References

Canty, Angelo. 1997. “Boot Function. S original. R
port” by Brian Ripley. In Bootstrap Methods and
Their Application. Cambridge University Press.

Cox, David R. and Joyce E. Snell. 1981. Applied
Statistics: Principles and Examples. Chapman and
Hall.

Davison, Anthony C. and David V. Hinkley. 1997.
Bootstrap Methods and Their Application.
Cambridge University Press.

Keele, Luke. 2008. Semiparametric Regression for the
Social Sciences. Wiley.

Lumley, Thomas. 2005. “R/S-PLUS Fundamentals and
Programming Techniques.” University of California,
Berkeley.

8Unfortunately, this optimization is not always available, as using matrices instead of data frames is not possible for some functions, for instance,
our original bootstrapping function requires data frames.

The Political Methodologist, vol. 17, no. 1 11

Rossini, Anthony, Luke Tierney and Na Li. 2003.
“Simple Parallel Statistical Computing in R.” UW
Biostatistics. Working Paper Series .

Sekhon, Jasjeet Singh. 2006. “The Art of
Benchmarking: Evaluating the Performance of R on

Linux and OS X.” The Political Methodologist, 14(1):
15-19.

Vance, Ashlee. 2009. “R You Ready for R?” New York
Times.

Table 2: Average Percent Increase in Efficiency

Snow Snow REvol- ParallelR ParallelR Matrices Less Memory
Machine Size 2 Size 4 ution Size 2 Size 4 Frames Options Up Front
Opt 755 47.22 46.77 2.41 -34.27 -34.12 96.77 88.46 91.86
32B Stats 47.97 47.38 2.24 -34.43 -35.40 94.14 86.69 92.49
64B Stats 49.49 49.12 1.38 -18.04 -18.22 97.76 88.68 89.73
Opt 620 49.60 49.42 1.47 -19.72 -14.79 98.33 88.30 91.15
HP 4100 0.77 0.83 2.09 -134.22 -140.37 97.84 88.41 96.60
Opt 280 0.42 0.12 1.32 -127.56 -128.20 98.61 89.27 90.29

Professional Development

Advice to Junior Faculty Column: Advice from John E. Jackson

John E. Jackson

University of Michigan
jjacksn@umich.edu

First, let me say these are very thoughtful and stimu-
lating questions. I enjoyed developing answers to them, and
being reminded of the pressures and opportunities I faced
at the same stage. Some issues are different, but you might
be a bit surprised to know how many are similar.

Expanding Networks

Q. I really enjoy the Polmeth Summer Meet-
ing, and am wondering about what other con-
ferences I might attend with similar intellectual
content? And what about these smaller confer-
ences I keep hearing about? How do you find
out about and get invited to those?

A. I am glad you enjoy and benefit from the Polmeth
Summer Meetings. The hosts go to great length in putting
on the meetings so it is nice to know their work is appre-
ciated. The opportunities offered by the regional meetings,
such as the ones organized by Jeff Gill in St. Louis and
Jonathan Nagler in New York, are good examples of what
you are looking for. Though they have regional names they

are not restricted to scholars in those regions any more than
are the Midwest meetings. These are smaller and more in-
formal yet bring a very high quality of participant and dis-
cussion. Invitations are regularly posted on the Polmeth
server.

Beyond these and the summer meetings, unfortu-
nately, there is no simple recipe for being invited to confer-
ences because they involve many different types, purposes,
and funding arrangements. Some conferences have a broadly
distributed call for papers, using venues such as the Polmeth
server, PS, etc. Watch for these and send in a proposal if
there is the slightest link from the theme to your work. At
your institution become part of centers and institutes as
these organizations often receive conference announcements
and distribute these to faculty associated with the center.
Also regularly search the websites of relevant academic and
policy institutes, such as the World Bank, as they usually
include calls for papers for future conferences. These confer-
ences often have a more substantive than a methodological
theme but they offer important visibility for your work and
the chance to meet other scholars with interests related to

